

Progress in Essential Oils

Brian M. Lawrence, Consultant

Hyssop Oil

Renzini et al. (1999) determined that the main constituents of a hyssop oil produced from plants collected in the Piedmont region (Italy) were as follows:

 $\begin{array}{l} \alpha\text{-pinene}\;(0.6\%)\\ \text{sabinene}\;(1.5\%)\\ \beta\text{-pinene}\;(11.1\%)\\ \text{myrcene}\;(2.1\%)\\ \text{limonene}\;(12.2\%)\\ \text{pinocamphone}\;(1.7\%)\\ \text{isopinocamphone}\;(43.3\%)\\ \beta\text{-bourbonene}\;(1.4\%)\\ \text{caryophyllene}\;\text{oxide}\;(0.5\%) \end{array}$

Garg et al. (1999) analyzed an oil produced from *Hyssopus officinalis* subsp. *officinalis* grown in an experimental garden in Lucknow (India). The composition of this oil was found to be as follows:

α-thujene (1.0%) α -pinene (1.8%) β -pinene (18.4%) sabinene (1.3%) limonene (5.6%) β -phellandrene (4.2%) (Z)- β -ocimene (0.1%) pinocamphone (49.1%) isopinocamphone (9.7%) α -terpineol (0.5%) myrtenol (0.7%) sabinyl acetate* (0.5%) methyl eugenol (0.2%) β-caryophyllene (0.3%) $\alpha\text{-humulene}\;(0.1\%)$ (Z)- β -farnesene (0.3%) germacrene D (0.7%) δ -cadinene (0.8%) γ -elemene[†] (0.2%) β-eudesmol (0.2%) α-eudesmol (0.2%)

It is known that three forms of H. officinalis subsp. officinalis occur: f. cyaneus Alef. (blue flowered form), f. ruber Mill. (pink flowered form) and f. albus Alef. (white flowered form). Chalchat et al. (2001) analyzed the composition of 12 oils produced from plants grown in Serbia. The results of this study are summarized in T-1. As can be seen from the results, the oils were grouped into five types depending upon the contents of major components. Also, it could be seen that the flower color (f. type) had no influence on the oil composition whatsoever.

Fraternale et al. (2004) analyzed oils produced from *H. officinalis* grown in two different locations near Urbine (Italy). The main components of the two oils are presented in T-2.

An oil of *H. officinalis* subsp. *angustifolius* produced from plants collected in the vicinity of Kose (Turkey) was the subject of analysis by Özer et al. (2005). The components characterized in this oil were:

 α -thujene (0.1%) α-pinene (0.8%) camphene (0.1%) sabinene (1.0%) β-pinene (10.6%) myrcene (2.5%) α-terpinene (0.1%) p-cymene (0.3%) limonene (0.5%) 1,8-cineole (7.2%) γ -terpinene (0.2%) linalool (0.1%) camphor (0.2%) pinocamphone (19.6%) pinocarvone (36.3%) borneol (0.3%)isopinocamphone (5.3%)

α-terpineol (0.8%) myrtenal (0.3%) pulegone (0.3%) piperitone (0.4%) thymol (< 0.1%) piperitenone oxide (0.1%) α-copaene (0.1%) β-bourbonene (0.1%) β-caryophyllene (0.4%) β -gurjunene (0.1%) γ-muurolene (0.3%) germacrene D (1.0%) bicyclogermacrene (0.6%) γ-cadinene (0.1%) δ -cadinene (0.2%) spathulenol (0.9%) caryophyllene oxide (0.1%)

Oils of hyssop of Bulgarian origin were found by Stoyanova and Grozeva (2006) to contain the following major components:

 $\begin{array}{l} \alpha\text{-pinene} \; (0.8\text{--}1.8\%) \\ \beta\text{-pinene} \; (9.2\text{--}14.2\%) \\ \text{sabinene} \; (2.0\%) \\ \text{myrcene} \; (3.0\%) \\ \text{limonene} \; (0.8\%) \\ 1,8\text{-cineole} \; (9.0\text{--}12.0\%) \\ \text{pinocamphone} \; (38.4\text{--}46.5\%) \\ \text{linalool} \; (1.8\%) \\ \text{camphor} \; (8.0\text{--}12.5\%) \\ \text{geraniol} \; (2.0\text{--}3.0\%) \\ \text{borneol} \; (2.1\text{--}3.0\%) \end{array}$

- G. Renzini, F. Scazzocchio, M. Lu, G. Mazzanti and G. Salvatore, Antibacterial and cytotoxic activity of Hyssopus officinalis L. oils. J. Essent. Oil Res., 11, 649–654 (1999).
- S.N. Garg, A.A. Naqvi, A. Singh, G. Ram and S. Kumar, Composition of essential oil from an annual crop of Hyssopus officinalis grown in Indian plains. Flav. Fragr. J., 14, 170–172 (1999).
- J-C. Chalchat, D. Adamovic and M.S. Gorunovic, Composition of oils of three cultivated forms of Hyssopus officinalis endemic in Yugoslavia:

[°] correct isomer not identified; † incorrect identification based on GC elution order

Compound 1(4)a 2(2) 3(2) 4(2) 5(2) α-pinene 0.1-0.2 0.1-0.3 0.1-0.3 0.2-0.3 0.1-0.0 α-thujene t-0.1 0.1-0.2 t-0.1 0.1 0.0 camphene t-0.1 t-0.1 t 0.1 t-0.0 β-pinene 2.5-4.9 3.8-6.8 3.7-6.5 5.0-6.3 1.2-13 sabinene 0.6-1.2 0.9-1.5 0.9-1.2 1.2-1.4 0.9-1. myrcene 0.8-1.3 0.9 0.1-1.3 0.9-1.0 1.2-1. α-terpinene 0-t t-0.1 t t t α-terpinene 0-t t-0.1 t t t t t 1.2-1.4 0.9-1. t t t t 1.2-1.4 0.9-1. t t t 1.2-1.4 0.9-1. t t 0.9-1.0 1.2-1.4 0.9-1. t 0.9-1.0 1.2-1.8 0.9-1.0 1.2-1.4 0.9-1.0 1.2-1.2 0.6
α-thujenet=0.10.1=0.2t=0.10.10.1camphenet=0.1t=0.1t0.1t=0.1β-pinene2.5=4.93.8=6.83.7=6.55.0=6.31.2=13.sabinene0.6=1.20.9=1.50.9=1.21.2=1.40.9=1.myrcene0.8=1.30.90.1=1.30.9=1.01.2=1.α-terpinene0=tt=0.1tttlimonene0.6=0.80.7=0.80.7=0.80.7=0.80.9=1.β-phellandrene1.4=2.90.7=1.22.1=2.20.61.2=7.(Z)-β-ocimenet=0.1t=0.10=t0.2t=0.γ-terpinenet0=tt=0.10=0.10=0.1(E)-β-ocimene0.1=0.4tt=0.10.4=0.50.1=0.p-cymenet=0.10.2=0.70.2=0.30.5=0.60.myrtenyl methyl ether1.0=2.82.5=3.92.1=2.81.1=1.43.9=6.α-thujonet=0.10.1=0.20.1t0.β-thujone0.2=0.30.10.1=0.20.3menthonet=0.40.1t=0.30.10.10.1
camphenet-0.1t-0.1t0.1t-0.1β-pinene $2.5-4.9$ $3.8-6.8$ $3.7-6.5$ $5.0-6.3$ $1.2-13.5$ sabinene $0.6-1.2$ $0.9-1.5$ $0.9-1.2$ $1.2-1.4$ $0.9-1.5$ myrcene $0.8-1.3$ 0.9 $0.1-1.3$ $0.9-1.0$ $1.2-1.5$ α-terpinene $0-t$ $t-0.1$ t t t limonene $0.6-0.8$ $0.7-0.8$ $0.7-0.8$ $0.7-0.8$ $0.7-0.8$ $0.9-1.5$ β-phellandrene $1.4-2.9$ $0.7-1.2$ $2.1-2.2$ 0.6 $1.2-7.5$ (Z)-β-ocimene $t-0.1$ $t-0.1$ $0-t$ 0.2 $t-0.5$ γ-terpinene t $0-t$ $t-0.1$ $0-0.1$ (E)-β-ocimene $0.1-0.4$ t $t-0.1$ $0.4-0.5$ $0.1-0.1$ $0.5-0.6$ $0.1-0.4$ 0.1 $0.2-0.3$ $0.5-0.6$ $0.1-0.1$ myrtenyl methyl ether $1.0-2.8$ $2.5-3.9$ $2.1-2.8$ $1.1-1.4$ $3.9-6.0$ $0.5-0.0$ $0.1-0.2$ 0.1 $0.1-0.2$ 0.1 $0.1-0.2$ 0.1 $0.5-0.0$ $0.2-0.3$ 0.1 $0.1-0.2$ 0.1 $0.1-0.2$ 0.3 menthone $0.2-0.3$ 0.1 $0.1-0.2$ 0.3 0.1 $0.1-0.2$ 0.3
β-pinene $2.5-4.9$ $3.8-6.8$ $3.7-6.5$ $5.0-6.3$ $1.2-13.5$ sabinene $0.6-1.2$ $0.9-1.5$ $0.9-1.2$ $1.2-1.4$ $0.9-1.5$ myrcene $0.8-1.3$ 0.9 $0.1-1.3$ $0.9-1.0$ $1.2-1.5$ α-terpinene $0-t$ $t-0.1$ t t limonene $0.6-0.8$ $0.7-0.8$ $0.7-0.8$ $0.7-0.8$ $0.7-0.8$ β-phellandrene $1.4-2.9$ $0.7-1.2$ $2.1-2.2$ 0.6 $1.2-7.5$ (Z) -β-ocimene $t-0.1$ $t-0.1$ $0-t$ 0.2 $t-0.1$ γ-terpinene t $0-t$ $t-0.1$ $0-0.1$ $t-0.1$ (E) -β-ocimene $0.1-0.4$ t $t-0.1$ $0.4-0.5$ $0.1-0.1$ p -cymene $t-0.1$ $0.2-0.7$ $0.2-0.3$ $0.5-0.6$ 0.0 myrtenyl methyl ether $1.0-2.8$ $2.5-3.9$ $2.1-2.8$ $1.1-1.4$ $3.9-6.0$ α -thujone $t-0.1$ $0.1-0.2$ 0.1 t 0.0 α -thujone $0.2-0.3$ 0.1 $0.1-0.2$ 0.3 menthone $t-0.4$ 0.1 $t-0.3$ 0.1 0.1
sabinene $0.6-1.2$ $0.9-1.5$ $0.9-1.2$ $1.2-1.4$ $0.9-1.2$ myrcene $0.8-1.3$ 0.9 $0.1-1.3$ $0.9-1.0$ $1.2-1.2$ α-terpinene $0-t$ $t-0.1$ t t limonene $0.6-0.8$ $0.7-0.8$ $0.7-0.8$ $0.7-0.8$ $0.9-1.8$ β-phellandrene $1.4-2.9$ $0.7-1.2$ $2.1-2.2$ 0.6 $1.2-7.6$ (Z) -β-ocimene $t-0.1$ $t-0.1$ $t-0.1$ $t-0.1$ $t-0.1$ γ -terpinene t t $t-0.1$ $t-0.1$ $t-0.1$ (E) -β-ocimene $0.1-0.4$ t t $t-0.1$ $0.4-0.5$ $0.1-0.1$ (E) -β-ocimene t t t t t t t $0.1-0.1$ t
myrcene $0.8-1.3$ 0.9 $0.1-1.3$ $0.9-1.0$ $1.2-1.0$ α-terpinene $0-t$ $t-0.1$ t t limonene $0.6-0.8$ $0.7-0.8$ $0.7-0.8$ $0.7-0.8$ $0.9-1.0$ β-phellandrene $1.4-2.9$ $0.7-1.2$ $2.1-2.2$ 0.6 $1.2-7.0$ (Z)-β-ocimene $t-0.1$ $t-0.1$ $0-t$ 0.2 $t-0.1$ γ-terpinene t $0-t$ $t-0.1$ $0-0.1$ $0-0.1$ (E)-β-ocimene $0.1-0.4$ t $t-0.1$ $0.4-0.5$ $0.1-0.1$ p-cymene $t-0.1$ $0.2-0.7$ $0.2-0.3$ $0.5-0.6$ 0.0 myrtenyl methyl ether $1.0-2.8$ $2.5-3.9$ $2.1-2.8$ $1.1-1.4$ $3.9-6.0$ α -thujone $t-0.1$ $0.1-0.2$ 0.1 t 0.0 α -thujone α -0.2 α -0.1 α -0.2 α -0.1 α -0.2 α -0.1 α -0.2 α -thujone α -0.4 α -0.1
α -terpinene 0-t t-0.1 t t t t limonene 0.6-0.8 0.7-0.8 0.7-0.8 0.7-0.8 0.9-1. β-phellandrene 1.4-2.9 0.7-1.2 2.1-2.2 0.6 1.2-7. (Z)-β-ocimene t-0.1 t-0.1 0-t 0.2 t-0. γ-terpinene t 0.1-0.4 t t-0.1 0-0.1 (E)-β-ocimene 0.1-0.4 t t-0.1 0.4-0.5 0.1-0. p-cymene t-0.1 0.2-0.7 0.2-0.3 0.5-0.6 0. myrtenyl methyl ether 1.0-2.8 2.5-3.9 2.1-2.8 1.1-1.4 3.9-6. α -thujone t-0.1 0.1-0.2 0.1 t 0.5 menthone t-0.4 0.1 t-0.3 0.1 0.1-0.2
limonene $0.6-0.8$ $0.7-0.8$ $0.7-0.8$ $0.7-0.8$ $0.9-1.8$ β-phellandrene $1.4-2.9$ $0.7-1.2$ $2.1-2.2$ 0.6 $1.2-7.8$ (Z)-β-ocimene $t-0.1$ $t-0.1$ $0-t$ 0.2 $t-0.2$ γ-terpinene t $0-t$ $t-0.1$ $0-0.1$ (E)-β-ocimene $0.1-0.4$ t $t-0.1$ $0.4-0.5$ $0.1-0.1$ p-cymene $t-0.1$ $0.2-0.7$ $0.2-0.3$ $0.5-0.6$ 0.0 myrtenyl methyl ether $1.0-2.8$ $2.5-3.9$ $2.1-2.8$ $1.1-1.4$ $3.9-6.0$ α-thujone $t-0.1$ $0.1-0.2$ 0.1 t 0.0 β-thujone $0.2-0.3$ 0.1 $0.1-0.2$ 0.3 menthone $t-0.4$ 0.1 $t-0.3$ 0.1 0.1
β-phellandrene 1.4–2.9 0.7–1.2 2.1–2.2 0.6 1.2–7. (Z)- $β$ -ocimene t=0.1 t=0.1 0-t 0.2 t=0.2 $γ$ -terpinene t 0.1–0.4 t=0.1 0-0.1 (E)- $β$ -ocimene 0.1–0.4 t t=0.1 0.4–0.5 0.1–0.0 p-cymene t=0.1 0.2–0.7 0.2–0.3 0.5–0.6 0.1 myrtenyl methyl ether 1.0–2.8 2.5–3.9 2.1–2.8 1.1–1.4 3.9–6. $α$ -thujone t=0.1 0.1–0.2 0.1 t 0.5 $β$ -thujone 0.2–0.3 0.1 0.1–0.2 0.3 menthone t=0.4 0.1 t=0.3 0.1 0.0
(Z)-β-ocimenet-0.1t-0.10-t0.2t-0.0γ-terpinenet0-tt-0.10-0.1(E)-β-ocimene0.1-0.4tt-0.10.4-0.50.1-0.0p-cymenet-0.10.2-0.70.2-0.30.5-0.60.0myrtenyl methyl ether1.0-2.82.5-3.92.1-2.81.1-1.43.9-6.0 α -thujonet-0.10.1-0.20.1t0.0 β -thujone0.2-0.30.10.1-0.20.3menthonet-0.40.1t-0.30.10.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
p-cymenet-0.10.2-0.70.2-0.30.5-0.60.myrtenyl methyl ether1.0-2.82.5-3.92.1-2.81.1-1.43.9-6.α-thujonet-0.10.1-0.20.1t0.β-thujone0.2-0.30.10.1-0.20.3menthonet-0.40.1t-0.30.10.1
myrtenyl methyl ether 1.0–2.8 2.5–3.9 2.1–2.8 1.1–1.4 3.9–6. α-thujone t–0.1 0.1–0.2 0.1 t 0.5 β-thujone 0.2–0.3 0.1 0.1–0.2 0.3 menthone t–0.4 0.1 t–0.3 0.1 0.1
α -thujone t-0.1 0.1-0.2 0.1 t 0.5 β -thujone 0.2-0.3 0.1 0.1-0.2 0.3 menthone t-0.4 0.1 t-0.3 0.1 0.1
β-thujone 0.2–0.3 0.1 0.1–0.2 0.3 menthone t–0.4 0.1 t–0.3 0.1 0.1
menthone t-0.4 0.1 t-0.3 0.1 0.
cis-sabinene hydrate 0.1–0.2 1.6–4.0 1.2–1.8 2.5–3.3 0.1–0.1
pinocamphone 40.8–48.7 2.4–6.6 15.5–21.3 63.3–64.9 1.3–2.
isopinocamphone 21.8–30.0 59.6–59.9 39.5–42.0 5.8–9.1 29.0–44.
pinocarvone 0.4–2.6 0.1–0.2 0.1–3.0 0.1–0.4 15.8–16.
linalool 0.8–0.9 0.1–1.1 1.0–1.3 0.8 1.3–2
β -caryophyllene 0.7–1.3 0.2–1.1 1.3 0.7–0.8 0.8–2.
terpinen-4-ol 0.1 0.5–1.0 0.4–0.5 0.7–0.9 0.1–0.
myrtenal 0.2–0.3 0.1–0.2 0.2–0.3 0.3–0.4 0.2–0.
allo-aromadendrene 0.8–1.3 1.1–1.3 1.3–1.4 0.3 0.5–1.
menthol 0.1–0.3 0.1–0.2 0.1–0.3 0.1–0.2 0.1–0.2
α-humulene 0.1–0.4 t–0.3 0.5–0.6 0.2–0.3 0.4–0.
methyl chavicol 0.1–0.2 0.1–0.2 0.2 0.1–0.2 0.1–0.2
germacrene D 2.4–2.8 2.2–2.3 1.8–4.1 1.2–1.7 0.5–6.
carvone 0.3 0.3 0.3 0.2-0.
bicyclogermacrene 1.1–2.8 1.5–1.6 1.0–3.0 0.3–0.6 0.1–4.
myrtenol 1.4–3.3 0.8–2.2 1.7 2.4–2.7 0.7–0.
2-hydroxypinocamphone t–0.1 0.2 0.1–0.3 t 0.1–0.
caryophyllene oxide 0.1–0.2 t–0.2 0.2–0.3 0.2 0.
cuminyl alcohol 0.1–0.3 0.2 0.2–0.3 t–0.1 0.
methyl eugenol 0.1–0.3 0.2–0.3 0.2–0.4 0.2 0.
elemol 0.9–3.5 3.2–4.3 4.4–4.7 0.5–0.6 1.6–5.
spathulenol 0.7–1.5 1.4 1.3–2.0 0.9–1.2 1.2–2.
γ-eudesmol 0.1–0.4 0.2–0.3 0.2–0.4 t–0.1 0.1–0.
α -muurolol 0.1–0.3 0.1–0.2 t–0.3 0.1 t–0.
α -eudesmol 0.1–0.4 0.3 0.3–0.4 t–0.1 0.1–0.
β -eudesmol 0.1–0.4 0.2 0.3–0.5 t 0.1–0.
α -cadinol 0.1–0.4 0.1 0.1–0.3 0.1–0.2 0.1–0.

t = trace (< 0.1%); a = number of oils; 1 = oils rich in pinocamphone > isopinocamphone; 2 = oils rich in isopinocamphone; 3 = oils rich in isopinocamphone; 4 = oils rich in pinocamphone; 5 = oils rich in isopinocamphone > pinocarvone

f. albus Alef., f. cyaneus Alef. and f. ruber Mill. J. Essent. Oil Res., 13, 419–421 (2001).

- D. Fraternale, D. Ricci, F. Epifano and M. Curini, Composition and antifungal activity of two essential oils of hyssop (Hyssopus officinalis L.). J. Essent. Oil Res., 16, 617–622 (2004).
- H. Özer, F. Sahin, H. Kilç and M. Güllüce, Essential composition of Hyssopus officinalis L. subsp. angustifolius (Bieb.) Arcangeli from Turkey. Flav. Fragr. J., 20, 42–44 (2005).
- A. Stoyanova and E. Grozeva, Bulgarian essential oils for the future: A review. Indian Perfum., 50, 42–45 (2006).

Osmanthus Extracts

Osmanthus extracts are obtained from the highly scented flowers of *Osmanthus fragrans* Lour. The most commonly encountered flowers are the golden-yellow ones; however,

Percentage composition of two Italian oils of Hyssopus officincalis

Compound	0il 1	0il 2
α-pinene	2.1	2.1
sabinene	0.4	0.4
β-pinene	10.5	10.8
myrcene	3.5	1.6
α-phellandrene	7.4	9.6
α-terpinene	1.9	0.7
linalool	0.2	7.9
camphor	0.3	5.3
pinocamphone	34.0	18.5
isopinocamphone	3.2	29.0
α-terpineol	0.1	0.5
linalyl acetate	2.9	8.0
β-caryophyllene	5.6	2.4
lpha-humulene	3.2	1.9
germacrene D	5.1	3.3
lpha-cadinene	2.9	< 0.1
cis-calamenene	8.0	< 0.1
β-cadinene	3.8	2.4
bicyclogermacrene	1.6	1.4
spathulenol	2.3	1.4

silvery-white flowers and orange-red flowers of *O. fragrans* can also be found.

The enantiomeric distribution of (E)- α -ionone in osmanthus absolute was found (Werkhoff et al. 1991) to be: (+)-(E)- α -ionone (99.8%): (-)-(E) α -ionone (0.2%).

Zhu et al. (1993) compared the headspace composition of *O. fragrans* var. *thunbergii* Makino (goldenflower), *O. fragrans* var. *latifolius* Makino and *O. fragrans* var. *aurantiacus* Makino flowers grown in China. The results of this study are summarized in T-3.

Ohloff (1994) reported that osmanthus absolute contained a trace amount of jasmolactone.

The floral volatiles identified in an isopentane extract of *O. fragrans* by Omura et al. (2000) were as follows:

(Z)-3-hexenol (0.90%) nonanal (0.56%) trans-linalool oxide[†] (1.44%) cis-linalool oxide[†] (2.99%) linalool (5.12%) trans-linalool oxide[‡] (0.41%) cis-linalool oxide[‡] (0.89%) (E)-α-ionone (0.32%) (E)-β-ionone (3.38%) γ-decalactone (6.55%) C_{23} - C_{38} alkanes (46.95%)

```
\begin{array}{l} {\rm C_{11}\text{--}C_{22}\ aliphatic\ acids\ (4.83\%)} \\ {\rm methyl\ esters\ of\ C_{16}\text{--}C_{18}\ acids\ (4.16\%)} \end{array}
```

Furthermore, the authors observed that although osmanthus flowers emitted a strong scent and possessed a vivid color, the flowers were not attractive to many insects. They found that this insect repellency was mainly due to γ -decalactone.

Kaiser (2002) reported that of the flowering plants found the varieties of *O. fragrans* possess the greatest diversity in aroma constituents derived from carotenoid degradation reactions. The carotenoid-derived constituents that were characterized as components of an absolute of osmanthus were as follows:

```
(E)-β-ionone (7.6%)
dihydro-β-ionone (6.4%)
dihydro-β-ionol (3.0%)
(E)-α-ionone (0.6%)
cis- and trans-theaspirane (0.7%)
4-hydroxy-β-ionone (0.3%)
4-oxo-β-ionol (0.3%)
4-oxo-dihydro-β-ionone (0.8%)
```

In addition, (E)- β damascenone (0.02%), dihydroactinodiolide, (E,E)-2,5epoxy-6,8-megastigmadiene (0.02%), (Z,Z)-2,5-epoxy-6,8-megastigmadiene, 2,7-epoxy-4,8-megastigmadiene, two isomers of 2-hydroxytheaspirane, 2,5-epoxy-megastigm-6-en-9-ol, 2,3,5-trimethylphenylpentan-4-ol, 5,8-megastigmadien-4-one (0.01%), (E)-5,7,9-megastigmatrien-4one (0.02%), dehydro-β-ionone (0.05%), (E)-4,7,9-megastigmatrien-3-one (0.01%), four isomers of 4,6,8-megastigmatrien-3-one (0.04%), 4,6,8-megastigmatrien-2-ol, 4.5-epoxy- α -ionone (0.02%), (E)-4,7-epoxy-5(11),8-megastigmadiene, 4-oxo-dihydro-β-iononyl acetate, four theaspirone isomers, (E)- and (Z)-retroionols, four isomers of 7-oxo-dihydrotheaspiranes, (Z)-retroγ-ionone and cyclic-β-ionone have also been found as minor constituents (< 0.01%) in this sample of osmanthus absolute. The structures of many of the above listed compounds can be seen in F-1.

Ishikawa et al. (2004) examined the enantiomeric distribution of five important aroma constituents of the yellow-flowered osmanthus. The following is a summary of their results:

```
\begin{array}{l} (2R,5S)\text{-}(-)\text{-}cis\text{-}linalool\ oxide\ (furanoid)}\\ (99.5\%)\text{:}(2S,5R)\text{-}(+)\text{-}cis\text{-}linalool\ oxide}\\ (0.5\%)\\ (2R,5R)\text{-}(-)\text{-}trans\text{-}linalool\ oxide\ (furanoid)}\\ (>99.5\%)\text{:}(2S,5S)\text{-}(+)\text{-}trans\text{-}linalool\ oxide}\\ (<0.5\%)\\ (3R)\text{-}(-)\text{-}linalool\ (99.9\%)\text{:}(3S)\text{-}(+)\text{-}linalool\ (0.1\%)}\\ (S)\text{-}(-)\text{-}\alpha\text{-}ionone\ (<0.1\%)\text{:}(R)\text{-}(+)\text{-}\alpha\text{-}ionone\ (>99.9\%)}\\ (R)\text{-}(+)\text{-}\gamma\text{-}decalactone\ (93.1\%)\text{:}(S)\text{-}(-)\text{-}\gamma\text{-}\\ decalactone\ (6.9\%)\\ \end{array}
```

Tamogami et al. (2004) repeated this same information; however, in this report they noted that the amounts of these above constituents were as follows:

```
cis-linalool oxide<sup>†</sup> (2.57%)

trans-linalool oxide<sup>†</sup> (9.45%)

linalool (8.66%)

(E)-\alpha-ionone (0.67%)

\gamma-decalactone (10.94%)
```

Kaiser (2005) reported the results of a headspace study on *O. fragrans* flower 'Four Seasons' using Porpak SQ as the adsorbent. The components characterized in this study were as follows:

```
\alpha-pinene (1.0%)
β-pinene (0.2%)
sabinene (0.2%)
\alpha-phellandrene (0.1%)
limonene (0.3%)
1,8-cineole (0.1%)
(E)-\beta-ocimene (0.8%)
p-cymene (0.1%)
octanal (0.1\%)
(E)-4,8-dimethylnona-1,3,7-triene (0.4\%)
(Z)-3-hexenyl acetate (10.0%)
6-methyl-5-hepten-2-one (0.2\%)
hexanol (0.2%)
(Z)-3-hexenol (4.3%)
nonanal (0.3%)
(E)-2-hexenol (0.3%)
trans-linalool oxide<sup>†</sup> (12.5%)
cis-linalool oxide<sup>†</sup> (17.0%)
linalool (15.1%)
(E)-2,3-epoxy-2,6-dimethylnona-6,8-diene
(0.2\%)
β-caryophyllene (0.3%)
cyclic \beta-ionone (0.2%)
trans-linalool oxide<sup>‡</sup> (0.5%)
cis-linalool oxide<sup>‡</sup> (1.5%)
nerol (0.1%)
dihydro-\beta-ionone (8.5%)
```

 $^{^{\}dagger}$ furanoid form; ‡ pyranoid form

Comparative percentage composition of the headspace volatiles of three varieties of *Osmanthus fragrans*

Compound	var. <i>aurantiacus</i>	var. <i>thunbergii</i>	var. <i>latifolius</i>
ethyl acetate	_	0.5	_
3-methylbutanone	_	0.1	_
2-hexenal*	0.1	_	_
3-hexenol*	0.1	_	_
3-hydroxy-2-butanone	-	2.3	6.0
5-hexen-3-one	_	1.0	_
3,3-dimethylhexane [†]	_	_	0.2
6-undecanone [†]	_	_	0.1
myrcene	_	_	0.1
6-methyl-5-hepten-2-one	0.1	_	_
decane	-	0.7	0.3
3-hexenyl acetate*	0.5	-	0.3
limonene	0.3	0.8	0.0
α-ocimene	0.1	18.0	9.1
1,8-cineole	0.1	10.0	J. I
(Z)-β-ocimene	0.1	_	
		_	
(E)-β-ocimene	9.9	7.0	10.1
cis-linalool oxide (furanoid)	4.6	7.8	18.1
trans-linalool oxide (furanoid)	7.5	6.1	14.1
3-cyclohexenylmethanol [†]	_ 	2.2	15.0
linalool	25.7	7.9	15.3
menthone	_	0.9	
6-methyl-3,5-heptadien-2-one	_	0.5	-
1,6-diacetoxyhexane [†]	_	_	1.8
6-ethanyldihydro-2,2,6-trimethyl-			
-2H-pyran-3(4H)-one [†]	0.6		
5-phenylmethoxypentanol [†]	_	1.1	0.1
ethyl benzaldehyde [†]	_	1.4	0.2
menthol	_	0.2	1.0
2-methyl-6-methylene-1,7-			
octadiene-3-one	0.6	_	-
cis-linalool oxide (pyranoid)	0.5	0.9	2.2
trans-linalool oxide (pyranoid)	1.4	0.6	1.0
(Z)-3-hexenyl butyrate	0.5	-	0.3
(E)-3-hexenyl butyrate	0.2	_	-
α-terpineol	-	_	0.2
hexyl butyrate	-	_	0.2
ethyl benzoate	_	_	0.2
carvone	_	3.2	0.2
benzothiazole	0.3	_	-
2,4-dimethylphenylethanone [†]	_	_	0.2
8,8-dimethyl-4-methylene-1-			
oxaspiro[2,5]oct-5-ene [†]	_	_	0.1
4,6,6-trimethylbicyclo[3.1.1]-hept-			
3-en-2-one [†]	_	_	0.1
(E)-β-ionone	3.0	2.5	2.3
5-hexyldihydro-2(3H)furanone	2.7		_
(E)-β-ionone	17.1	19.4	10.5
γ-decalactone	-	1.1	0.1
pentadecane	0.2	-	J. 1
hexadecanoic acid	U.Z	0.1	
4-oxo-β-ionone		0.1	
+ oxo-p-ionone	-	0.1	

*correct isomer not identified; †questionable identification

In addition, smaller amounts of myrcene (0.03%), (Z)- β -ocimene (0.05%), benzaldehyde (0.05%), cis-theaspirane A (0.02%), transtheaspirane B (0.02%), α -humulene (0.05%), methyl salicylate (0.02%), 2-phenethyl alcohol (0.05%) and methyl cis-(Z)-jasmonate (0.05%) were also found in the osmanthus headspace.

- P. Werkhoff, W. Bretschneider, M. Güntert, R. Hopp and H. Surburg, *Chirospecific analysis in flavor and essential oil chemistry*. Z. Lebensmitt Unters Forsch., 192, 111–115 (1991).
- L-F. Zhu, Y-H. Li, B-L. Li, B-Y. Lu and N-H. Xia, Aromatic Plants and Essential Oil Constituents. pp. 85–86, Peace Book Co., Hong Kong (1993).
- G. Ohloff, Scent and Fragrances. The Fascination of Odors and their Chemical Perspectives. Translated W. Pickenhagen and B.M. Lawrence, p. 223, Springer Verlag, Berlin, Germany (1994).
- H. Omura, K. Honda and N. Hayashi, Floral scent of Osmanthus fragrans discourages foraging behavior of cabbage butterfly Pieris rapae. J. Chem. Ecol., 26, 655–666 (2000).
- R. Kaiser, Carotenoid-derived aroma compounds in flower scents. In: Carotenoid-derived Aroma Compounds. Edits., P. Winterhalter and R.L. Rouseff, ACS Symp. Series 802, pp. 160–182, Amer. Chem. Soc., Washington DC (2002).
- M. Ishikawa, S. Tamogami, K-I. Awano, M. Amaike, Y. Takagi and T. Kitahara, Analysis of enantiomeric ratios of aroma components in flowers using an efficient GLC system with a mixed chiral stationary phase. Poster P. 120, 35th International Symp. on Essential Oils, Sept. 29–Oct. 2, Sicily, Italy (2004).
- S. Tamogami, K-I. Awano, M. Amaike, Y. Takagi and T. Kitahara, *Analysis of enantiomeric* ratios of aroma components of several flowers using a Chiramix column. Flav. Fragr. J., 19, 1–5 (2004).
- R. Kaiser, Meaningful Scents Around the World. Wiley-Verlag Helvetica Chimica Acta, p. 248, Zurich, Switzerland (2005).

⁽E)- α -ionone (0.1%) geraniol (0.3%) (E)- β -ionone (3.5%) (E)-nerolidol (0.3%) γ -decalactone (7.0%) γ -dodecalactone (0.1%)

[†]furanoid form; ‡pyranoid form

VOL. 33 DECEMBER 2008

1. β-ionone

2. dihydro- β -ionone

3. α -ionone

4. dihydro- β -ionol

5. β -damascenone

6. dihydroactinodiolide

 $\begin{array}{c} 7.\ 5.7.9\text{-megastigmatrien-} \\ \text{4-one} \end{array}$

8. 5,8-megastigmadien-4-one

9. 3,4-dehydro-βionone

 $10.\ 4{,}7{,}9{-}megastigmatrien-\\3{-}one$

11. four isomers of 4,6,8-megastigmatrien-3-one

[""0",0","]

12. from left: (E,E)- and (Z,Z)-2,5-epoxy-6,8-megastigmadiene

13. 2,7-epoxy-4,8-megastigmadiene

14. 2,5-epoxymegastigm-6-en-9-ol

15. (Z)-retro-γ-ionone

16. cyclic-β-ionone

17. 2-hydroxytheaspirane

18. 4-hydroxy-β-ionone

19. 4,5-epoxy-α-ionone

20. 2,3,5-trimethylphenylpentan-4-ol

21. 4-oxo-β-ionone

22. 4-oxo-7,8-dihydro- β -ionone

23. 4-oxo- β -ionone

 $\begin{array}{l} 24.\ 4\text{-}oxo\text{-}dihydro\text{-}\beta\text{-}\\ ionol\ (R=H)\\ 4\text{-}oxo\text{-}dihydro\text{-}\beta\text{-}ionyl\\ acetate\ (R=Ac) \end{array}$

25. retroionol

26. retroionone

27. theaspirone A

28. theaspirane A

29. theaspirane B

30. theaspirone B

0 H

31. 7-oxo-dihydrotheaspirane A and B isomers (left to right: $A^1,\,A^2,\,B^1,\,B^2$)

To purchase a copy of this article or others, visit www.PerfumerFlavorist.com/articles.