

Progress in Essential Oils

Brian M. Lawrence, Consultant

Marjoram Oil

The composition of marjoram oil, which is obtained from *Origanum majorana* L., differs from that of the plant because on steam distillation the heat labile *cis*- and *trans*-sabinene hydrate and their corresponding acetates can be converted to terpinen-4-ol. Novak et al. (2007) pointed out that *cis*-sabinene hydrate possesses an intensive, spicy, marjoram-like aroma. In addition to the 'sabinyl'-rich oils, a chemotype whose oil is rich in carvacrol can also be found.

A phenol-rich oil of *O. marjorana* that was produced in the laboratory from plants collected in Calabria (Italy) was found by Gionfriddo et al. (2001) to contain the following major components:

camphor (1.8%) carvacrol (68.5%) thymol (12.2%)

Daferera et al. (2003) determined that the composition of an oil produced from *O. majorana* that was rich in carvacrol contained the following constituents:

 α -pinene (0.7%) camphene (<0.1%) β -pinene (0.4%) myrcene (1.3%) α -terpinene (5.4%) p-cymene (5.8%) β -phellandrene (1.8%) γ -terpinene (9.3%) terpinolene (1.5%) linalool (5.6%) borneol (0.5%)terpinen-4-ol (9.4%) γ-terpineol (2.4%) linalyl acetate (0.8%) thymol (0.8%) carvacrol (45.1%) neryl acetate (0.5%) geranyl acetate (0.5%) β -caryophyllene (1.0%)

An oil of marjoram of commercial origin was determined by Pavela (2006) to possess the following composition:

 α -thujene (1.1%) α -pinene (0.8%) sabinene (8.8%) β -pinene (0.5%) myrcene (1.9%) α -phellandrene (0.8%) α -terpinene (8.6%) p-cymene (1.2%) limonene (4.2%) 1.8-cineole (0.2%) γ -terpinene (13.1%) trans-sabinene hydrate (4.2%) terpinolene (3.1%) cis-sabinene hydrate (11.7%) cis-p-menth-2-en-1-ol (2.4%) trans-p-menth-2-en-1-ol (1.6%) borneol (t) terpinen-4-ol (21.1%) α-terpineol (4.9%) cis-piperitol (0.5%) cis-dihydrocarvone (0.3%) terpinen-3- ol^{\dagger} (0.7%) trans-sabinene hydrate acetate (0.6%) linalyl acetate (1.5%) bornyl acetate (t) β -caryophyllene (2.5%) α -humulene (0.1%) bicyclogermacrene (1.2%) caryophyllene oxide (0.1%)

t=trace (<0.1%) †incorrect identification

The volatile components of an aqueous extract of marjoram leaves were analyzed using a PDMS-DVB fiber combined with GC/MS by Pérez et al. (2007). The components that were characterized were as follows:

benzaldehyde^a (0.81) p-cymene (2.50) linalool (0.81) sabinene hydrate^{*} (8.60) borneol (0.20) menthol (0.38) terpinen-4-ol (96.50) 4-isopropenyltoluene[†] (1.10) α -terpineol (21.80) carvone (2.20) p-menth-5-en-3-one[†] (0.24)

^aµg/g

°correct isomer not characterized †incorrect identification based on GC elution order Origanum majorana plants were grown from seeds collected from a wild population growing near the village of Vouni (Limassol District, Cyprus) by Novak et al. (2007). Oils were produced from 50 plants grown in Vienna and analyzed by GC/MS. Examination of the results reported in **T-1** reveals that the oils could be subdivided into three chemotypes; a sabinyl chemotype (28), an α -terpineol chemotype (2) and a mixed chemotype (18).

Charib et al. examined the oils produced from marjoram plants grown under different compost and fertilizer regimens in Egypt using GC/MS. The oils were found to range in composition, irrespective of the fertilization regimen, as follows:

 α -pinene (2.1–4.8%) sabinene (6.2-8.3%) myrcene (1.1-2.0%) α -phellandrene (0.1–2.4%) α -terpinene (0.2–13.1%) p-cymene (6.6–13.9%) γ-terpinene (9.1–16.4%) trans-sabinene hydrate (1.6-6.6%) terpinolene (6.7-18.5%) α -terpineol[†] (0.1–1.1%) terpinen-4-ol (17.8-24.2%) p-menth-1-en-8-ol[‡] (2.8–4.3%) nerol (0.1-0.3%) linalyl acetate (2.0-5.3%)bornyl acetate (0.1-0.7%) α -terpinyl propionate (0-0.6%) bicycloelemene (0.1-0.4%) nervl acetate (0.1-0.6%) geranyl acetate (0.2-0.5%) β -caryophyllene (2.4–3.2%) aromadenerene (0.1-0.8%) α-humulene (0.2-0.3%) ledene (0-0.6%) bicyclogermacrene (0.5-1.5%) α -cadinene (t-0.1%) spathulenol (0.1-1.1%) caryophyllene oxide (0-0.2%)

 † incorrect identification based on GC elution order ‡ should be α -terpineol t=trace (<0.05%)

Marjoram plants cultivated in Egypt were harvested in spring (flowering),

Reproduction in English or any other language of all or part of this article is strictly prohibited. © 2013 Allured Business Media.

summer (fruiting), autumn (second fruiting) and winter (pre-flowering). Oils that were produced from plants harvested in each season were analyzed by GC/MS. A summary of the results of those analyses can be seen in **T-2**. The high thymol content for the oil produced from plants harvested during flowering in the spring is

T-1. Percentage composition of the oils from three chemotypes of *Origanum majorana*

Compound	Type 1	Type 2	Туре З
α -thujene	0.5	0.3	0.1
α-pinene	1.1	0.7	0.4-0.6
camphene	0.5	0.6	0.6-0.8
sabinene	9.2-9.6	5.0-5.4	1.1
β-pinene	0.6	0.3	0.2
myrcene	2.0	1.5	1.0
limonene + β-phellandrene	3.2-3.4	2.3	1.3
1,8-cineole	0.6	0.5–0.7	0.2-0.6
(Z)-β-ocimene	0.1	0t	0
γ-terpinene	0.2	0t	0
<i>trans</i> -sabinene hydrate	4.0-4.2	2.3–2.5	0.5–0.9
<i>cis</i> -sabinene hydrate + linalool	59.7-61.5	32.1–33.1	3.0-5.4
borneol	1.7–1.9	1.8–2.0	2.2
terpinen-4-ol	0.3	0.2	0.2
α-terpineol	3.6-3.8	39.3-40.7	69.9–75.1
cis-sabinene hydrate acetate	0.9–1.1	0.6-0.8	0
linalyl acetate	3.1–3.7	3.3-4.1	4.5-8.3
bornyl acetate	0.2	0.2	0.1–0.3
β-caryophyllene	2.2-2.4	2.2-2.4	3.0-4.0
α-humulene	0.1	0.1	0.2
bicyclogermacrene	2.5-2.7	2.9–3.3	3.5–3.9
germacrene D-4-ol	0.2-0.4	0.6–0.8	0.2
t=trace (<0.1%)			

T-2. Percentage composition of marjoram oil produced from plants harvested throughout the season

Compound	Spring oil	Summer oil	Autumn oil	Winter oil
sabinene	4.5	6.1	7.4	4.2
β-pinene	1.0	0.9	0.4	0.3
α -phellandrene	0.1	-	-	-
α -terpinene	4.4	13.3	0.4	2.8
p-cymene	2.3	4.2	13.9	3.3
γ-terpinene	8.3	18.3	-	5.3
<i>trans</i> -sabinene hydrate	-	0.2	5.1	5.6
terpinolene	2.9	2.6	43.1	0.3
<i>cis</i> -sabinene hydrate	25.3	7.4	-	54.4
<i>cis</i> -p-menth-2-en-1-ol	0.3	0.9	0.5	0.5
trans-p-menth-2-en-1-ol	0.1	0.5	-	-
terpinen-4-ol	7.7	37.4	20.5	16.3
α -terpineol	1.3	2.7	6.4	4.1
methyl thymol	0.1	-	-	-
linalyl acetate	-	-	-	0.9
thymol	38.4	-	-	-
δ-elemene	-	0.5	-	-
β-caryophyllene	1.5	2.6	0.7	0.9
bicyclogermacrene	-	1.7	-	0.6
spathulenol	-	-	0.3	-

surprising and needs repeating to ensure the value of the result.

The leaves of *O. majorana* were found by Wood et al. (2008) to contain 208 μ g/kg of rotundone.

Young pot-raised *O. majorana* plants were micro-hydrodistilled to yield oils wheich were bulked and analyzed by Banchio et al. (2008) using GC-FID and GC/MS. The oil was found to possess the following composition:

tricyclene (0.1%) α -pinene (0.2%) camphene (0.2%) sabinene (0.1%) α -terpinene (0.2%) p-cymene (0.1%) limonene (0.2%) 1,8-cineole (0.3%) γ -terpinene (0.5%) cis-sabinene hydrate (8.4%) terpinen-4-ol (55.1%) cis-piperityl acetate (1.3%)trans-piperityl acetate (0.5%) borneol (1.4%) trans-sabinene hydrate (13.2%) $\alpha\text{-terpineol}~(9.1\%)$ trans-carveol (1.0%) camphor (0.7%) β -caryophyllene (1.8%) α -humulene (3.7%)

A commercial oil of marjoram of Albanian origin was analyzed by GC and GC/MS by Jirovetz et al. (2008). This oil, which was also screened for its antimicrobial activity (as were some of its major and minor components) was found to contain the following components:

 α -thujene (0.8%) α -pinene (0.8%) sabinene (8.3%) β -pinene (0.5%) myrcene (2.1%) α -phellandrene (0.4%) p-cymene (1.3%) α -terpinene (8.9%) limonene (2.0%) β -phellandrene (2.2%) α -terpinene (14.0%) cis-sabinene hydrate (3.8%) terpinolene (2.2%) trans-sabinene hydrate (15.5%) linalool (1.4%)cis-p-menth-2-en-1-ol (2.3%) terpinen-4-ol (21.3%) α -terpineol (3.3%) cis-piperitol (0.1%) trans-piperitol (0.5%) cis-sabinene hydrate acetate (0.1%) geraniol (0.1%)

These same results were reported in another publication, this time by Schmidt et al. (2008).

A commercial sample of marjoram oil that was produced in Kashmir (India) was reported (Anon, 2008) to contain the following constituents:

 α -thujene (0.6%) α -pinene (0.8%) sabinene (5.5%) β -pinene (0.5%) myrcene (1.5%)3-octanol (0.1%) α-phellandrene (0.3%) α -terpinene (6.7%) p-cymene (4.4%) limonene (1.6%) β -phellandrene (1.6%) β -ocimene° (0.1%) γ-terpinene (10.9%) cis-sabinene hydrate (2.5%) terpinolene (2.8%) linalool (2.5%) trans-sabinene hydrate (6.3%) terpinen-1-ol (1.8%) terpinen-4-ol (30.2%) α -terpineol (4.7%) dihydrocarvone° (0.2%) cis-piperitol (0.8%) nerol (0.1%) linalyl acetate (2.5%) bornvl acetate (0.1%)thymol (2.0%) nervl acetate (0.1%) geranyl acetate (0.2%) β -caryophyllene (2.8%) α -humulene (0.1%) germacrene D (0.1%) bicyclogermacrene (1.4%) β -bisabolene (0.2%) spathulenol (0.2%) caryophyllene oxide (0.3%) isospathulenol (0.2%)

° correct isomer not identified

In addition, trace amounts (<0.05%) of (Z)-3-hexenol, camphene, methyl carvacrol, citronellyl formate, carvacrol, α -copaene, β -bourbonene, ledene and δ -cadinene were also found in this oil.

Marjoram oil produced from plants cultivated in Sharkia region (northeastern Cairo, Egypt) was analyzed using GC/MS by Viuda-Martos et al. (2010). The oil composition was found to be as follows:

 α -thujene (0.6%) α -pinene (0.6%) sabinene (5.0%) myrcene (1.4%) α -terpinene (5.2%) p-cymene (6.1%) limonene (3.6%) γ-terpinene (9.3%) terpinolene (2.4%) (E)- β -ocimene (4.1%) linalool (3.3%) camphor (0.4%) terpinen-4-ol (41.4%) α -terpineol (6.5%) thymol (0.6%) β -caryophyllene (1.4%)

Ramos et al. (2011) collected *O. majorana* plants from a site 3,340 m above sea level near San Isidro de Apartaderos (Merida, Venezuela). Hydrodistillation of fresh leaves for 3 h yielded an oil in 0.6%. Analysis of the oil by GC-FID and GC/MS revealed that it contained the following constituents:

 α -thujene (0.2%) sabinene (1.4%) myrcene (0.5%) α -terpinene (3.6%) p-cymene (2.4%) β -phellandrene (1.5%) γ-terpinene (7.2%) trans-sabinene hydrate (4.4%) terpinolene (2.0%)cis-sabinene hydrate (30.2%) cis-p-menth-2-en-1-ol (2.0%) trans-p-menth-2-en-1-ol (1.1%) borneol (0.4%)terpinen-4-ol (28.8%) α -terpineol (6.9%) cis-piperitol (0.5%) trans-piperitol (0.5%) linalyl acetate (3.9%) eugenol (0.3%) neryl acetate (0.3%) geranyl acetate (0.6%) β -caryophyllene (0.6%) bicyclogermacrene (1.1%)

Trace amounts (<0.05%) of butyl acetate and geraniol were also characterized in this oil.

An oil produced by hydrodistillation from the dry leaves of *O. majorana* obtained from a commercial spice company in China was subjected to analysis by Jiang et al. (2011) using GC-FID and GC/MS. The components characterized in this oil were: β -phellandrene (0.7%) p-cymene (6.8%) linalool (0.4%) trans-p-menth-2-en-1-ol (0.7%) cis-p-menth-2-en-1-ol (0.7%) terpinen-4-ol (33.0%) p-cymen-8-ol (0.5%) α -terpineol (6.7%) cis-piperitol (0.6%) linalyl acetate (0.7%) α -terpinyl acetate (2.3%) δ -elemene (0.4%) geranyl acetate (0.3%) α -copaene (1.9%) β -caryophyllene (2.3%) aromadendrene (0.7%) γ -muurolene (0.3%) calamenene° (0.4%) spathulenol (6.0%) caryophyllene oxide (11.9%) humulene oxide° (0.4%) β -eudesmol (0.3%)

° correct isomer not identified

In addition, the authors reported a further 17 compounds in the oil. However, as these were all incorrect identifications they are not included in this review.

- F. Gionfriddo, C. Mangiola, A. Pirrello and R. Manganaro, Studio preliminare sulla composizione degli oli essenziali di alcane piante officinali calabresi. Essenz. Deriv. Agrum., 71, 67–70 (2001).
- D. Daferera, B.N. Ziogas and M.G. Polissiou, *The effectiveness of plant essential oils on the growth of* Botrytis cinera, Fusarium*sp. and* Clavibacter michiganensis *subsp.* michiganensis. Crop Protect., **22**, 39–44 (2003).
- R. Pavela, Insecticidal activity of essential oils against cabbage aphid Brevicoryne brassicae. J. Essent. Oil Bear. Plants, **9**, 99–106 (2006).
- R.A. Perez, T. Navarro and C. de Lorenzo, HS-SPME analysis of the volatile compounds from spices as a source of flavor in 'Campo Real' table olive preparations. Flav. Fragr. J., 22, 265–273 (2007).
- J. Novak, B. Lutkas and Ch. M. Franz, *The essential* oil composition of wild growing sweet marjoram(Origanum majorana L., Lamiaceae) from Cyprus—three chemotypes. J. Essent. Oil Res., **20**, 339–341 (2008).
- F.A. Gharib, L.A. Moussa and O.N. Massoud, Effect of compost and bio-fertilizers on growth, yield and essential oil of sweet marjoram (Majorana hortensis) plant. Internat. J. Agric. Biol., 10, 381–387 (2008).
- C. Wood, T.E. Siebert, M. Parker, D.L. Capone, G.M. Elsey, A.P. Pollnitz, M. Egger, M. Meier, T. Vössing, S. Widder, G. Krammer, M. Sefton and M.J. Herderich, From wine to pepper: Rotundone, an obscure sesquiterpene, is a potent spicy aroma compound. J. Agric. Food Chem., 56, 3738–3744 (2008).
- E. Banchio, P.C. Bogino, J. Zygadlo and W. Giordano, Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem. Syst. Eco., 36, 766–771 (2008).

- L. Jirovetz, S. Bail, G. Buchbauer, Z. Denkova, A. Slavchev, A. Stoyranova and E. Schmidt, *Chemical composition, antimicrobial activities* and olfactory evaluations of an essential marjoram oil from Albania as well as some target compounds. Ernahrung, **32**, 197–201 (2008).
- E. Schmidt, S. Bail, G. Buchbauer, I. Stoilova, A. Krastanov, A. Stoyanova and L. Jirovetz, *Chemical composition, olfactory evaluation* and antioxidant effects of the essential oil of Origanum majorana L. from Albania. Nat. Prod. Commun., 3, 1051–1056 (2008).
- Anon, Som Extracts, Marjoram oil, Kashmir (India). GC-MS Analysis. Indian Perfum., 52, 76 (2008).
- M. Viuda-Martos, A. El-Nasser, G.S. El-Gendy, E. Sendra, J. Fernandez-Lopez, K.A.A. El-Razik, E.A. Omer and J.A. Perez-Alvarez, *Chemical* composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants. J. Agric. Food Chem., 58, 9063–9070 (2010).
- S. Ramos, L.B. Rojas, M.E. Lucerna, G. Meccia and A. Usubillaga, *Chemical composition and antibacterial activity of* Origanum majorana *L. essential oil from Venezuelan Andes.* J. Essent. Oil Res., 23, 45–49 (2011).
- Z.-T. Jiang, R. Li, Y. Wang, S.-H. Chen and W.-Q. Guan, Volatile oil composition of the natural spice Origanum majorana L. grown in China. J. Essent. Oil Bear. Plants, 14, 458–462 (2011).

To purchase a copy of this article or others, visit www.PerfumerFlavorist.com/magazine.