Quantitative Relationships Between
Structure and the Fruity Odor of Esters

By Karen Rossiter, Quest International, Ashford, Kent, England

ver the last ten years an explosive growth in the

development of computer hardware has been matched
by the appearance of many commercial and academic
molecular modeling and structure-activity relationship (SAR
and QSAR) packages. (The “Q” is used in QSAR when
describing the structure of the compound in a quantitative
way, the simplest examples of quantitative descriptors being
the mass of the compound or the number of atoms present.)
The molecular modeling and SAR packages have been
primarily developed within the arena of the drug and
agrochemical industries in an attempt to ease the search for
relationships between structure and activity. The fragrance
chemist has followed in the footsteps of the drug designer
and used similar techniques in his own SAR studies. How-
ever, there have been very few studies comparing the
usefulness of different SAR approaches to the field of
olfaction. In addition, the rapid developments currently be-
ing made withinthe SAR field mean there isacontinuing need
to evaluate the use of new molecular modeling and SAR
techniques in the study of structure-odor relationships.

This article describes the evaluation of three QSAR
approaches (CoMFA, Hansch and Principal Component
Analysis) which were used to investigate the correlation
between chemical structure and the fruitiness of esters. It
includes the first published study of the use of comparative
molecular field analysis (CoMFA) in the formulation of a
structure-odor relationship.

Purpose of the Study

The objective of this work was to evaluate the relative
usefulness of various QSAR approaches in understanding
and predicting the odor properties of chemicals. The odor
property chosen for this initial assessment was the per-
ceived intensity of the fruity character of 27 aliphatic esters.
This data set was considered to be ideal for the following
reasons:

¢ Good reproducible odor data was already avatlable
in-house.

» The data set is of a suitable size for QSAR work.

¢ The structural variation exhibited by these com-
pounds is limited {position of the ester group, the
pattern of substitution and molecular weight).

If useful QSAR models could not be obtained for this data
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set, it is highly unlikely that the same techniques could be
applied successfully to more complicated problems. Thus
the results from this work provide a good initial indication
as to the usefulness of various QSAR approaches in the field
of olfaction.

Materials and Methods

The materials for study were prepared by standard
synthetic procedures. Each product’s structure and purity
(>99%) were confirmed by GC, GC/MS, NMR and IR
spectroscopy.

The odor of each ester was profiled by Quest’s sensory
analysis team. The sensory panel consisted of a pool of 28
assessors, all of whom were trained to be able to identify
standard odors, both individually and in complex mixtures,
and to score their perceived intensity using a ratio scoring
technique known as magnitude estimation.! The materials
were assessed as 10% solutions in diethyl phthalate. Ateach
session, six to eight panelists profiled the odor of six to eight
esters by scoring the perceived intensity of 51 standard
descriptors, The assessments were replicated until a mini-
mum of 20 had been obtained for each ester. The panelists’
scores were normalized and averaged to give a concensus
profile for each ester. Assessments across the complete set
of esters were standardized by including pentyl ethanoate
in each test.

The fruity descriptors consisted of pear, peardrop, pine-
apple, apple and lactone. The combined fruit score, which
in all cases was dominated by the pear or peardrop score,
was used in this SAR study. Sensory data of this kind, which
uses human subjects to quantitatively describe differences
in odor character, is innately variable. However, by using
highly trained and experienced panel members and care-
fully designed experiments, this variability can be mini-
mized. Over the range of data obtained in this study, care
should be taken not to interpret differences of less than 10
as anything more than variability in the data. The fruit score,
structure and reference code for each ester in the study are
listed in Table I.

Several compounds in the data set contain one or even
two asymmetric carbon atoms and, as such, exist as isomeric
mixtures. Ideally these isomers should be separated and
their individual odor properties ascertained. However, this
would be very time consuming, and extreme care would
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Table . Structures and fruit scores of the 27 esters and the structures of the four test esters

Structure Reference Fruit Score % Structure Reference Fruit Score %
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Key to Table |.
A = hexyl methanoate K = pentyl 2,2-dimethyipropanoate Vv = 22-dimethylpropyl 2-methylbutanoate
B = pentyl ethanoate L = 2-methylhex-2-yl ethancate W = 2,2-dimethylpropyl 3-methylbutancate
© = butyl propancate M = 2-methylhex-2-y! 2,2-dimethylpropanoate X = 2-methylbutyl 3-methylbutanoate
D = propyl butanoate N = pentyl pentanoate Y = 2-methylbutyl 2-methylbutancate
E = ethyl pentanoate O = pent-2-yl pentanoate Z = pent-2-yl 3-methylbutanoate
F = methyl hexanoate P = 2-methylbut-2-yl pentanocate AA = pent-2-yl 2-methylbutancate
G = pent-2-yl ethanoate Q = 2-methylbutyl pentanoate AB = but-2-yl propancate
H = 2-methylbut-2-yl ethanoate R = 2,2-dimethylpropyl pentanoate AC = propyl propanocate
| = propyl 2-methylpropancate S = 3-methylbutyl pentanoate AD = cyclohexyl propanoate
J = sthyl 2,2-dimethylpropancate T = pentyl 2-methyibutancate AE = cyclopentyl propancate
U = pentyl 3-methylbutancate
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STRUCTURE AND THE FRUITY ODOR OF ESTERS

have to be taken to make sure that any observed differences
in odor were not due to the presence of trace impurities.
This is often the case with flexible molecules, where the
reported differences tend to be so small that they have often
been explained away as due to trace impurities. The most
striking differences in odor tend to occur in rigid molecules
such as carvone and menthol. For this data set of very
flexible molecules it was assumed that the stereoisomers
exhibited identical odor properties; thus, the fruit odor
score of the isomeric mixture was used.

The implications of chirality in the development of a
QSAR are as follows. If physicochemical parameters or 2-D
structural descriptors are used to describe structural varia-
tion, the resulting model will not be able to discriminate
between enantiomers even if they do exhibit different
biological activity. The best way of discriminating between
enantiomers is by using three-dimensional QSAR tech-
niques such as CoMFA or conformational analysis.

The molecular modeling, CoMFA analysis and partial
least squares statistical analysis were carried out using the
Tripos SYBYL software version 6.03 and 6.1 on an IRIS
INDIGO ELAN workstation. The operating system was
IRIX version 4.05F. Forward stepwise regression, back-
ward elimination regression and principal component analysis
were carried out using the SAS software,

The CoMFA Approach

CoMFA, Comparative Molecular Field Analysis,? is a
relatively new QSAR approach. It was introduced by Tripos
Associates in 1988, To the best of my knowledge, this is its
first use in the field of olfaction.

The idea underlying CoMFA is that differences in bio-
logical activity are often related to differences in the shapes
of the fields surrounding the molecules. Thus, as its name
suggests, CoMFA compares the steric and/or electrostatic
fields of a set of molecules. These fields are measured by
placing a hypothetical probe atom, usually an SP® hybrid-
ized C* atom, at regular positions around the molecule and,
at these various locations, calculating the energy of interac-
tion between the probe atom and the molecule. When the
probe atom is close to the molecule the energy of steric
‘interaction is high, and when it is close to an electron-rich
moiety, such as an oxygen atom or p electrons, the energy of
electronic interaction is high. Thousands of energy terms
are calculated and become the structural descriptors in a
QSAR table. These are then analyzed using partial least
squares (PLS} analysis to see whether there is a correlation
between the molecular fields and the biological activity.
Partial least squares is one of the recommended statistical
techniques for data sets which contain a much Iarger num-
ber of prldlld.[()ly variables than corﬂpauuua ER1 pi‘Ouuces
an equation relating biological activity (y) to the explanatory
variables (x terms), which can be used to predict the activity
of untested compounds. In this case y is the fruit score and
the x terms are electrostatic and steric interaction energies.
Since the equation resulting from a CoMFA procedure is

very large, the model is also displayed graphically showing
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the regions of desired and undesired steric bulk and the

areas where negative potential is favorable or unfavorable.
The most imnortant narameter in a CoMFA ctudvic the
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relative alignment of the individual molecules when their
tields are computed. Properly aligned molecules have a
comparable conformation and a similar orientation in Car-
tesian space. For a series of molecules exhibiting the same
biological activity via the same mechanism, it is assumed
that there is a common conformational arrangement of key
structural features. The so-called “active” conformational
arrangement of fruity esters, or for that matter anyodiferous
molecule, is not known. It is therefore up to the organic
chemist or molecular modeler to explore possible energeti-
cally favorable conformations that all of the molecules can
adopt. In this study the chosen conformation was that in
which the longest carbon chain backbone formed a stag-
gered straight-chain arrangement. The esters were aligned
using pentyl pentanoate as the template by superimposing
the carbonyl carbon atom and the two ester oxygen atoms.
The ester group was chosen for the alignment based upon
the assumption that fruity esters may interact with olfactory
receptors through hydrogen bonding with either or both of
the ester oxygen atoms acting as hydrogen bond acceptors.
In the case of the chiral esters, only one enantiomer was
modeled, and it was assigned the fruity score of the mixture.
Thus, for esters such as pent-2-yl ethanoate (G) and propyl
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Figure 1. Diagram illustrating the enantiomer of
choice for molecular modeling

pent-2-yl ethancate (G}

2-methylpropanoate (I), the ester chain was arranged as in
Figure 1 and the methyl substituents placed behind the
plane of the molecule, The 27 mutually aligned molecules
are shown in Figure 2,

The first CoMFA model was poor. It could explain only
59% of variation in the observed fruit score (as indicated by
from cross-validation experiments, to be of poor predictive
value {cross-validated R? using the leave-one-out tech-
nique, was 0.27). The low value for the cross-validated R?
suggests that either the assumptions underlying the model
are incorrect or one or more of the compounds included in
the model are outliers, The compounds that were poorly
modeled were identified from a plot of the predicted vs. the
actual fruit score, The worst outlier was hexyl methanoate
(A) with a predicted fruity score of 83% and an actual score
of 24%. Since the steric and electrostatic properties of
methanoate esters are quite different from those of higher
esters, this compound was omitted from the data set. An-
other poorlymedeled compound was pentyl 3-methylbutanoate
(U). The predicted fruit score for this compound was much
higher than the observed score (124% predicted vs. 66%
actual). However, this material also had a high sweaty score,
which is probably due to the presence of trace quantities of
isovaleric acid.” This sweaty note is likely to mask some of the
fruity character of pentyl 3-methylbutanoate. Therefore, it
was decided that this compound should also be omitted
during rederivatization of the QSAR.

Omission of hexyl methanoate and pentyl 3-methylbutancate
resulted in animprovement in the model. The cross-validated
R?, using the leave-one-out technique, was 0.32; the RZ
measure of fit was 0.84; the F value was 36.9; and the optimum
number of components was 3. The fraction of the 84%
variance explained by the electrostatic fields was 9%, and that
explained by the steric fields was 91%. This suggests that the
fruitiness of aliphatic esters is predominantly governed by
steric effects, and that electrostatic effects appear not to be
important. This is not too surprising since all of the com-
pounds in this data will have similar electronic properties
{they all contain only one functional group, the ester group,

and this group is superimposed).

* The sample of pentyl 3-methylbutanoate was washed with hase and subsequently
determined to e »90% pure. However, a compound that appears to be pure may
contain impurities present at levels below the detection limit of even today's
sophisticated analytical techniques. If these are strongly odoriterous, as is the case
with isovaleric acid, they will significantly affect the overall odor profile of a
sample. This Hlustrates the importance of olfactory purity as opposed to chemical
purity in the measurement of odors,
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2-pentyl ethanoate (fruit score = 34%)

Figure 3. CoMFA model

The results from this QSAR analysis are shown graphi-
cally in Figures 3 and 4. Figure 3 shows the spatial distribu-
tionof important steric and electrostatic properties affecting
the fruit score. Negative potential is favorable in the red
areas (corresponding to the high electronic density of the
ester group) and disfavorable in the blue areas. Bulky
substituents are desirable in the green areas and undesir-
able in the yellow areas. To relate these regions to actual
molecules, both pentyl ethanoate and pent-2-yl ethanvate
have been placed within the CoMFA model. From the
latter it can be seen that substituents close to the ethereal
oxygen atom fall into the forbidden yellow region, resulting
in a decrease in the fruit score. The location of the yellow
region on one side of the molecule reflects the input of only
one enantiomer for the chiral esters.

The graphs in Figure 4 are plots of the predicted vs.
actual fruit score. For a perfect model the points would fall
on a diagonal line from left to right. Points which deviate
from this line correspond to compounds that are poorly
modeled by the QSAR. This graph visually shows that the
model is good. In fact, an R? of 0.84 is extremely good for a
correlation between odor and structure. The difficulties
associated with odor measurement generally give rise to a
10-15% variation in the individual odor scores. Thus, even
if a perfect correlation between structure and odor was
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Figure 4. Graphs of predicted vs. actual frult score
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Table Il. The CoMFA-predicted fruit scores and the
observed fruitiness of the four test esters

Predicted Observed
Test compound fruit score (%) frultiness
but-2-y! propanoate {(AB) 31 modsrate
propyl propanoate (AC) 66 strong
cyclohexyl propanovate (AD) 38 strong
cyclopentyl propanoate (AE) 34 strong

obtained, one would not expect the R? to be much greater
than 0.90. However, the cross-validated R2 of 0.52 is indica-
tive of a model of only moderate predictive ability.

The CoMFA procedure was repeated using only the a-
chiral esters to determine whether or not a more robust
model was obtained. Because chiral esters were excluded,
we could remove the assumptions about the effect of
chirality on the organoleptic properties of aliphatic esters.
The resulting COMFA model was very similar to that ob-
tained using the larger data set (R, = 0.84, cross-validated
R, = 0.47, optimum number of components = 3, F = 23.3,
fraction of variance explained by the steric and electrostatic
fields = 82% and 18% respectively). The spatial distribution

of the imnortant sterie fialds wasg alen vary similar excent
O LI HIBPOIQlil sacile L Was alot) vily siilinal CARLCPY

that there were now two areas where substituents were
undesirable, one on either side of the molecule. This re-
flects the input of compounds such as 2-methylbut-2-yl
ethanoate (H), 2-methylhex-2-yl ethanoate (L), 2-methylhex-
2-yl 2,2-dimethylpropancate (M} and 2-methylbut-2-yl
pentancate (P), which all have very low fruit scores. The
CoMFA model using the larger data set had only one region
of undesired steric bulk because the analysis was dominated
by the presence of single enantiomers.

The CoMFA madel was used to predict the activity of
four test esters (Table I1). These esters were prepared as
part of a local school's chemistry project and as such have
not been odor profiled by the Quest expert panel. Instead,
the four esters were assessed by a panel of fragrance
chemists and ranked as weak, moderate or strong. All of the
esters were strongly fruity except for but-2-yl propanoate,
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which was of only moderate fruit intensity. It was felt that
this qualitative data would be adequate for testing the
predictive ability of QSAR models.

In the case of the CoMFA model, it was concluded that
accurate predictions were restricted to compounds (such as
propyl propanoate and but-2-yl propanoate) which were
very similar in structure to those used to derive the model.
In contrast, extrapolation of the QSAR to predict the fruit
score of compounds (such as cyclopentyl propanoate and
cyclohexyl propanonate) that structurally fell outside the
scope of the data set, gave poor results. Reasons for this
limitation include the sensitivity of the CoMFA approach to
changesin conformational arrangement and molecular align-
ment. For example, the predicted fruit scores for five
differentlow energy conformations of cyclohexyl propanoate
were in the range of 18-48%.

The CoMFA model has regions of desired steric bulk
(green regions) on both sides of the ester function. Since
both these areas are approximately five carbon atoms away
from the functional group, the CoMFA model predicts that
pentyl pentanoate (N) will have a very high fruit score.
However, this is not the case. Pentyl pentanoate has a lower
observed fruitscore than, forexample, either pentyl ethanoate
(B) or ethyl pentanoate (E) (65% vs. 100% and 85%,

rpcnpnh\;p]v\l From thicitis clear that one nrt]"le |1 mitations
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of the CoMFA approach for this data set is that it cannot give
an either/or model. It cannot graphically represent that the
most active esters have a long chain on one side of the ester
group and a short chain on the other, and that it doesn’t
matter which way the ester group is oriented between the
two chains. That s, as shown in Figure 5, the short chain can
be attached either to the ether oxygen atom (-0-) (as in
compound E) or to the carbonyl group (C=0) (as in com-
pound B); the same is true for the long chain. Sell,*® during
his studies into the SAR of fruit odor, also concluded that for
an ester to be strongly fruity the ester group is best placed
one or two carbons in from the end of the chain.

The above observations suggest that perhaps a better
alignment of these esters is one in which the longest alkyl
chain and the carbonyl group are superimposed. However,
when this alignment was investigated, only two out of the 27
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Figure 5. Simple representation of CoOMFA QSAR showing its
o

alignment is based upon superimposition of
the carbonyl group, the number of atoms,
including oxygen, on the alcohol side is six
and on the other side four, Thus the alcohol
65 side of these C10 esters is always longer than
the chain derived from the acid moiety, even
when there is extensive branching as in the
case of 22-dimethylpropyl pentancate (R)
(Figure 6). The CoMFA model derived from
100 the data set containing the two realigned
molecules was very poor.

The Hansch Approach

85 This approach is named after the founder
of modern QSAR, Corwin Hansch, who sug-
gested that the biological activity of a mol-
ecule was a function of its electronic, steric
and hydrophobic properties. The biological

pentyl ethanoate (B)
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Figure 6. Realignment of the ester data set
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esters in the data set had to be realigned. They were ethyl
pentanoate (E) and methyl hexanoate (F). This stems from
the fact that the data set had originally been chosen to study
the effect of steric hindrance while maintaining a constant
molecular weight.#> One of the reasons for this is that
increasing molecular weight is believed to be associated
with a decrease in fruitiness.%” Consequently, the data set
contains a large number of C10 isomeric esters derived
from various C5 alcohols and C5 carboxylic acids. Since
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activity is correlated to a range of physical
and structural parameters in the form of a
regression equation. In the literature there are several
examples in which the Hansch approach has been used to
correlate odor with molecular properties. These include the
odor threshold values of a series of homologous com-
pounds,3 the odor quality of fruity and floral odorants,” the
odor similarities of ethereal, floral and benzaldehyde-like
odorants and anosmia to fatty acids.®

Since the CoMFA approach had highlighted the impor-
tance of the position of the ester group in the chain, a
parameter (L, ) was invented to quantitatively describe
this structural feature. I was derived as follows. The
length of the acid moiety (R ) was defined as the distance
between the carbonyl carbon atom and the terminus carbon
atom, and the length of the alcohol moiety (R,) as the
distance between the ether oxygen atom and the end carbon
atom (I'igure 7). These lengths were expressed as a fraction
of the total lengths (L) so comparisons could be made
between compounds of varying chain length. The two
fractions were then multiplied togethertogive L _ . L_
is low when the ester group is toward the end of the chain,
irrespective of which end, and higher when the ester group
is in the middle. A simple 2-D plot of L__; against fruit
score for six unsubstituted esters (B,C,D,E,F,N) shows, as
isexpected, that L, increases as the fruitiness of the ester
decreases (Figure 8).

We evaluated combinations of I, with a variety of
other parameters. One of the combinations which best
accounted for the observed differences in the fruit score of
aliphatic esters was equation 1 (Figure 9). This equation
contains a molecular length term (L}, L, and Charton
steric substituent constants (v}. The Charton parameter is
related to measured rates of hydrolysis of esters and, as
such, is a measure of intramolecular steric effects around
nearby reaction centers.'® The negative coefficient of the
Charton parameters means that as the value of these con-

T L

fruit score goes down. The larger coefficient of v, means
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(R2 = 0.67, number of components = 2, cross-validated R2 = 0.50, F = 21.34, n= 24)
where: VR = Charton substituent constant for the alkyl group attached to C=0
Vo = Charton substituent constant for the alkyl group attached to ether oxygen atom
L = molecular length
L., = descriptor for position of ester group in the chain

Figure 9. QSAR equation 1 obtained by partial least squares analysis

that steric hindrance around the ether oxygen atom has a
greater effect than steric bulk around the carbonyl group.
The positive coefficient for length (L) means that fruitiness
increases as the molecule becomes longer. The negative
coefficientof L, meansthatasl, _ increases, thatis, as
the ester group is placed toward the center of the chain, the
fruity character is reduced.

The relative importance of the four variables was esti-
mated using forward selection regression and backward
elimination regression. In forward selection, variables are
successively added to the model and retained if the fit of the
model is significantly improved. The {irst variable entered

will he tha ane that ic most hichlv earrelated on its own
WL D€ U1€ O ULAT 13 MOSt Mgy COrrciaicq, on S Owil,

with the y variable (in this case, the fruit score). The second
variable entered will be the one that causes the greatest
maximization of R%, and so on. The backward elimination
regression method begins with all the variables in the model
and proceeds by eliminating the least useful variables one at
a time. Both regression techniques showed that the most
important parameter out of those evaluated was Vg, the
second most important vy, the third either molecular length
or the octanol-water partition coefficient (logP), and the

LogP can replace the role of length in the correlation
QSAR because these two parameters are highly correlated
(Figure 10). However, their physical interpretation in un-
derstanding structure odor correlations is quite different.
Molecular length could be associated with shape require-
ments for optimum interaction with the receptor system,

40/Perfumer & Flavorist

whereas the balance between hydrophobicity and lipophilicity
will affect the transport properties of a molecule across
aqueous-lipid interfaces.

The correlation between molecular length and logP is
clearly seen in the corresponding 2-D plot (Figure 10).
However, a better estimate of the correlation between the
two parameters can be obtained from the parameter corre-
lation matrix (Table IIT). The elements of the correlation
matrix can take on a value from —1 to + 1, where +1 indicates
perfect positive correlation between two parameters, -1
perfect negative correlation and a value of zero indicates no
correlation. Thus the +1.00 values on the diagonal of Table

III cirmnly tall g that o narameter ic narfectly carrelarad
SHNPRY 1eL US 34l & parameicr 1s periectly correiated

with itself. The pairs of parameters which are significantly
correlated with each other are length and logP and-—
because molecular length is used in the derivation of L
—lengthand L, andlogPand L, ;. Ttisinteresting that
the correlations between the fruit score and the parameters
suggest a slightly different order of relative importance for
the parameters than the forward selection and backward
elimination regression analyses. Once again v, comes out
as being the most important. However, there is little differ-
ence between the second two most important parameters
(Vg and length) and it is somewhat surprising, based upon
the observation that logP can replace the role of length in
the QSAR equations, that logP is not correlated to the fruit
score at all.

At first sight, the Hansch correlation QSAR (equation 1,
Figure 9) does not appear to be as good as the CoMFA
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Table Ill. Correlation matrix

fruit score v, Doy length L. logP
fruit score +1.00 -0.30 -0.67 +0.36 -0.16 -0.01
By 030 +1.00 008 +0.08 +0.31 +036
Vor 067 =008 +1.00 -0.15 +025 +0.21
length +0.35 +0.08 015 +1.00 +0.62 +0.83
[ -0.16 +0.31 +0.25 +0.62 +1.00 +0.72
logP -0.01 +036 +0.21 +0.83 +072 +1.00

Table IV, The Hansch-predicied fruit scores

Predicted Observed

Test compound fruit score (%) frultiness
but-2-yl propanoate (AB) 47 moderate
propyl propancate (AC) 62 strong
cyclohexyl propancate (AD) 58 strong

cyclopentyl propanoate (AE) 58 strong

model. Although they are expected to have similar predic-
tive abilities, as indicated by their cross-validated R2 values
of 0.50 and 0.52 respectively, the Hansch model accounts
for only 67% of the observed variation in fruit score, as
opposed to the 84% explained by the CoMFA model. The
same conclusion is drawn by comparing the corresponding
graphs of the actual vs. predicted fruit scores (Figure 4).
However, when the two models were put to the real test and
used to predict the activity of the four test esters, it was
found that the Hansch model, in contrast to the CoMFA
model, was capable of both interpolative and extrapolative
prediction (Table IV). This difference in predictive ability is
believed to be due to the different methods used to quantify
steric hindrance. Advantages of the Charton steric substitu-
ent constants include their relationship to measured rates of
hydrolysis of substituted esters and their independence of
the postulation of a single active conformation.

Other steric parameters, notably the Kier and Hall con-
nectivity indices,!! have also been used successfully in the
Hansch approach to correlate odor with molecular struc-
ture.%%12 These indices are simply calculated from the
topology of the molecule and, as such, represent the size
and extent of branching in a molecule. Data sets such as
these are ideal for further comparisons of the Hansch and
CoMFA approach. Preliminary investigations at Quest In-
ternational into the use of CoMFA to correlate Amoore’s'?
bitter almond data set were disappointing On the other
hand, Kier” and 1 Dearden'? both obtained gOOd correlations
using various connectivity indices in the Hansch approach.

Principal Component Analysis

Principal component analysis (PCA) is a technique used
to reduce an n-dimensional data set to either a two- or
three-dimensional data set. This allows the display of n
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Table V. Variance explained
by the principal components

Proportion Cumulatlve
PC Elgenvaiue of variance variance
1 1.779 44.4% 44.4%
2 1.076 26.9% 71.4%
3 0.808 20.1% 91.6%
4 0.337 8.4% 100.0%

molecular properties on a simple 2-D or 3-D plot, where
each point represents a compound which can be coded
according to either its chemical name or biological activity.
If the chosen molecular properties are indeed important in
determining the biological activity of interest, then distinct
clusters will be formed for compounds of different activity.
This technique is thus well suited for classified biological
data such as active/inactive, strong/moderate/weak and odor
descriptors. Since the majority of odor data is of a classified
nature, the evaluation of QSAR techniques in the field of
olfaction would be incomplete without the inclusion of a
classification method, such as PCA.

Reduction in dimensionality is achieved by the creation
of principal components (PCs), each being a linear combi-
nation of all the original explanatory variables. The first
principal component explains the greatest variation in the
data cloud, the second the next maximum variation and so
on. The principal components become the new axes in the
2-D or 3-D plot.

The fruit score for each ester was converted to a qualita-
tive odor measurement by ranking the ester as weak, mod-
erate or strong according to the following rules:

% fruit score ranking
<33 weak
33-66 moderate
> 66 strong

Four principal components were created from the four
variables used in the Hansch approach: the two Charton
results are summarized in Tables V and VI. Each principal
component (PC) has an associated eigenvalue which is
related to the proportion of variance explained by the PC.
Each new PC explains successively less of the total variance.
As a rule of thumb, a PC which has an eigenvalue greater
than 1 contains more information than a single variable and,
as such, should be included in the final PC analysis. Using
this criterion, this data set can be reduced from four dimen-
sions to two dimensions; the two PCs explain 71.4% of the
original variance.

The new principal components can be interpreted using
the eigenvectors (Table VI). These measure the contribu-
tion of each original property to each principal component.
Thus, PC1 is predominantly made up of L, . length and
vy; PC2is predominantly v p: PC3 is predominantly vg.

Interestingly, a 2-D plot of PC1 and PCZ2, which in
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Table VI. Eigenvectors

Variable PC1 PC2 PC3 PC4
Uy 0.435 -0.235 0.861 0.118
L 0.121 0.924 0.146 0.331
length 0.605 -0.228 -0.453 0.614
L 0.655 0.195 -0.181 -0.707

comb

combination explain 71.4% ol the variation in the molecular
property cloud, resulted in no well-defined clusters of
different activity classes. This suggests that the variables
that make the greatest contribution to PCI, namely length
and L . arenotthe molecular properties which primarily
determine the fruitiness of the esters. These findings are in
agreement with the results from the forward selection and
backward elimination regression analyses. However, a plot
of PC2 vs. PC3 produced some clustering of esters with
strong, moderate and weak fruity odor characteristics (Fig-
ure 11). The strongly fruity esters form a tight cluster
between PC2 values of -1.5 and -0.5 and PC3 values of
-0.75 to +0.25. The moderately fruity esters radiate out
from the “strong” cluster, and the weakly fruity esters are on
the periphery of the graph.

In Figure 11, the boundaries between each class are
somewhat “fuzzy” because of the arbitrary nature of the
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classification. For example, compound G with a fruit score
of 34% is ranked as moderate and compound J with a fruit
score of 32% as weak. However, from the fruit scores it is
clear that there is no significant difference between the
fruitiness of these two esters. Consequently, the principal
component analysis was repeated using only the strong and
weak compounds to see whether or not this gave better
discrimination. The results from this analysis were very
similar to those obtained using all three classes of esters.
The eigenvalues and eigenvectors were virtually identical.
The PC2 vs, PC3 plot was also very similar to that obtained
from the original analysis, with, of course, just the moderate
points missing. Both models poorly modeled 2,2-
dimethylpropyl pentanoate (R). This is an ester which has a
strong fruity odor but which falls amongst the weak esters
in the PC plot. Interestingly, it is also the main outlier in the
Hansch model where, again, its activity is significantly
under predicted (predicted fruit score = 35, observed score
= 72).

The eigenvectors for PC2 and PC3 show that the Charton
substituent constant for the alcohol moiety makes the great-
est contribution to PC2, and that the Charton substituent
constant for the acid moiety makes the greatest contribu-
tion to PC3. From the above results, one might expect that
a simple 2-D plot of the two different Charton steric
substituent constants would produce an equally good dis-
criminating map. However, this is not the case. The bound-
aries between the different activity classes are less well
defined, and there are examples of esters from different

3 p—
x Key to fruitiness
X A strong
2r R & moderate
A . x weak
o b4
O 1k ® unknown (test ester)
o e
4 5n o3
- L
0 4_-6
A ® L]
F Y
q4F . A an, x
A X
Il 1 L J
-2 -1 0 1 2 3
PC3
Figure 11. Scatter plot of PC2 vs. PC3

activity classes with exactly the same x,y coordinates. Thus
the contribution made by the other properties in PC2 and
PC3 improves the discriminating ability of the resulting
model and also gives unique coordinates for every com-
pound in the data set.

The activity of the four test esters can be estimated from
their position on the PC2vs. PC3 plot (Figure 11). Although
all four compounds lie within the moderate activity class,
but-2-yl propanoate (AB) lies toward the moderate-weak
boundary line and thus would be predicted, out of the four
test esters, to be the one with the weakest fruity character,
while propyl propanoate (AC), which is close to the strong-
moderate boundary, would be predicted to be the strongest
fruit ester. The two cyclic esters (AD and AE) would be
predicted to have a fruit odor of moderate intensity. Thus
the PCA model, although it uses the same explanatory
variables as the Hansch model, appears to be poorer at
predicting the activity of the two esters which structurally
fall outside the scope of the test data set.

In order to make a better comparison between the
principal component analysis and the Hansch model, the
scores for the second and third principal components were
used parameters in alinear regression. The resulting QSAR
equation (equation 2, Figure 12) is comparable to equation
1. They hoth have similar R? values (0.64 and 0.67, respec-
tively) and give similar predicted fruit score values for the
four test esters. The predicted fruit scores obtained using
equation 2 are 46% for but-2-yl propanoate (AB), 63% for
propyl propanoate (AC), 55% for cyclohexyl propanoate
{AD) and 37% for cyclopentyl propancate (AE).

Concluslon

Each QSAR technique produced a model which was
capable of relating the fruitiness of aliphatic esters to a
limitednumber of molecular properties. Steric effects around
the ester group were found to be the most important
determining property in all three cases. The Hansch and
CoMFA approaches also showed that the introduction of
substituents on the alcohol side had a greater detrimental
effect on the fruity character than substituents on the acid
side. All of these results were in agreement with the findings
of Sell,*3 who in 1986 used his chemical expertise to draw
qualitative conclusions about the effect of substitution on
the intensity of fruit odor. It was thus concluded that these
techniques can be used to identify sensible relationships
between structure and odor, and that they can therefore be
applied, with some degree of confidence, to more compli-

Figure 12. QSAR equation 2

Fruit score = 52.97 - 14.26 PC2 — 13.40 PC3
(RZ = 0.64, F = 18.90, n = 24)

where: Uy = Charton substituent constant for the alkyl group attached to C=0
Charton substituent constant for the alkyl group attached to ether oxygen atom

Vor =
L = molecular length
L., = descriptor for position of ester group in the chain
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cated problems where the relationship between structure
and activity is not so obvious. One advantage of all of these
quantitative techniques over empirical SAR rules is that
they can be used to predict the activity score or activity class
of a new compound. In addition, computer-assisted SAR
allows the simultaneous comparison of hundreds of com-
pounds, whereas the organic chemist is restricted to com-
paring only a few compounds at a time.

The CoMFA model is quick and easy to use once the
molecules have been aligned. Its use in prediction is also
particularly straightforward. The new compound only needs
to be drawn, minimized and aligned, then “at a press of a
button” its activity is predicted. The most important adjust-
able parameter in CoMFA is the relative alignment of the
individual molecules. However, it is difficult to decide how
to superimpose conformationally flexible molecules, or
molecules which appear to have little in common in terms
of obvious chemical functionality. Molecular modeling soft-
ware companies have developed programs that are capable
of identifying common conformational arrangements of a
set of active compounds. However, these have been de-
signed primarily for compounds that possess a high degree
of chemical functionality, such as drug molecules. Odorifer-
ous molecules, on the other hand, tend to have only one or
two functional groups and a relatively large hydrophobic
group. It is thus anticipated that the use of the CoMFA
approach in olfaction will be restricted to the study of rigid
molecules and closely related analogues.

The success of an SAR derived from statistical tech-
niques such as the Hansch approach or principal compo-
nent analysis is heavily dependent upon the number and
quality of the selected descriptors. If the QSAR is going to
be used to design new materials, one important criterion is
that the parameters are understandable. Ideally, values of
the explanatory properties should be available for every
compound in the data set. However, this is often not the
case, and the SAR worker is forced to omit from the analysis
compounds which contain valuable information. The fruity
ester study was no exception. The unavailability of three
Charton steric substituent constants meant that the Hansch
and PCA models were derived from a reduced data set of 24
compounds. This scenario is best avoided by the use of
calculated properties, many of which can be obtained from
molecular modeling systems. One property that is particu-
larly difficult to quantify and thus include in a statistical
QSAR approach is shape. Therefore, biological activity that
is believed to be strongly dependent on shape, such as odor
quality, is best studied using 3-D QSAR tools such as
CoMFA or conformational analysis. Odor intensity, on the
other hand, particularly when restricted to a specific odor
type and chemical class, can be related to molecular prop-
erties using the statistical QSAR approaches reviewed here.
Itis believed that in these cases one can use a general QSAR
equation, which includes a volatility term {such as vapor
pressure or gas chromatography retention data), a hydro-
phobicity term (such as logP) and a parameter related to
steric hindrance around the osmophore group.

48/Perfumer & Flavorist

The potential for SAR in the field of olfaction is exempli-
fied by a few studies where it is claimed that structure-odor
correlations have led to the discovery of a new fragrance
ingredient.*!# As progress in the biological sciences leads
to an increased understanding of the mechanism of olfac-
tion, and as more sophisticated SAR tools are developed,
the search for such correlations should become easier. This
challenge, coupled with the potential predictive ability of
this approach, will entice chemists and molecular modelers
to continue research in this area.
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