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Quantitative Relationships Between
Structure and the FruityOdor of Esters

By Karen Rossiter, Quest International, Ashford, Kent, England

Odevelopmentofcomp.terhwdwmehasbeenrnatched

ver the last ten years an explosive growth in the

by tbe appearance of many commercial and academic
molecular modeling and structure-activity relationship (SAR

and QSAR) packages. (The “Q is used in QSAR when

describing the structure of the compound in a quantitative

way, the simplest examples of quantitative descriptors being

the mass of the compound or the number of atoms present.)
The molecuku modeling and SAR packages have been

primarily developed within the arena of the drug and

agrOchemical industries in ~ attempt tO ease the search fOr
relationships between structure and activity, Tbe fragrance

chemist has followed in tbe footsteps of the drug designer

and used similar techniques in his own SAR studies. How-

ever, there have been very few studies comparing the
usefulness of different SAR apprmacbes to the field of

olfaction. In addition, the rapid developments currentfy be-

ingmadewithinthe SAR field mean there is acontinuingneed
to evaluate the use of new molecular modeling and SAR

techniques in the study of structure-odor relationships.

This article describes the evacuation of three QSAR

apprOacbes (COM FA, H~sch and princip~ COmpOnent
Analysis) which were used to investigate tbe correlation

between chemical structure and the fruitiness of esters. It
includes the Fkst published study of the use of compwative

molecular field analysis (COMFA) in the formulation of a

structure-odor relationship.

Purpose of the Study

The objective of this work was to evaluate the relative

usefulness of various QSAR approaches in understanding
and predicting the odor properties of chemicafs. The odor

property chosen for this initiaf assessment was the per-

ceived intensity of the fruity character of 27 aliphatic esters.
This data set was considered to be ideal for the following

reasons:

● Good reproducible odor data was already available
in-house.

. The data set is of a suitable size for QSAR work.

● The structural variation exhibited by these com
pounds is limited (position of the ester group, tbe

pattern of substitution and molecular weight).

If useful QSAR models could not he obtained for this data

set, it is highly unlikely that the same techniques could be

apphed successfully to more complicated problems. Thus
the results from this work provide a good initial indication

as to the usefulness of various QSAR approaches in the field

of olfaction,

Msterisls and Methode

The materiafs for study were prepared by standard

synthetic procedures. Each product’s structure and purity
(>99%) were confirmed by GC, GC/MS, NMR a“d IR

spectroscopy.
The odor of each ester was profiled by Quest’s sensory

analysis team. Tbe sensory panel consisted of a pool of 28

assessors, afl of whom were trained to be able to identify
standard odors, both individually and in complex mixtures,

and to score their perceived intensity using a ratio scoring

technique known as magnitude estimation. 1 The materials
were assessed as 10’% solutions in diethyl phthalate. At each

session, six to eight panelists profiled the odor of six to eight

esters by scoring the perceived intensity of 51 standard
descriptors, The assessments were replicated until a mini-

mum of 20 bad been obtained for each ester, The panelists’

scores were normalized and averaged to give a concwnsus
profile for each ester. Assessments across the complete set

of esters were standardized by including pentyl ethanoate

in each test.
The fruity descriptors consisted of pear, peardmp, pine-

apple. apple and kwtone. The combined fruit score, which
in all cases was dominated by the pear or peardrop score,

was used in this SAR study. Sensory data of this kind, which

uses human subjects to quantitatively describe differences
in odor character, is innately variable. However, by using

highly trained and experienced panel members and care-

fully designed experiments, this variability can be mini-
mized. Over the range of data obtained in this study, care

should be taken not to interpret differences of less than 10

as anything more than variability in the data. The fruit score,
structure and reference code for each ester in the study are
listed in Table I.

Several compounds in the data set contain one m- even

two asymmetric carbon atoms and, as such, exist as isomeric
mixtures. Ideafly these isomers should he separated and

their individual odor properties ascertained. However, this

would be very time consuming, and extreme care would
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Key to Table 1.

A . hery methancate K . pe”ty 2,2dinmthylpropanoate v . 2,2-dimethylpropyl2-methylbutano.te

B . penty eth.noate L . 2-methylhex-2-ylethanoale
C . b.lyl prcpmwate

W . 2,24methylpropyl Z-melhylbutanoate
M . 2-methylhex-2.yl2,2-3imethylpmpanoate X = 2-methylbuY %methylb.tanoate

D = propylb.tanoate N . pentylpentanoate Y . 2-memylbuty2-methylbutanoate

E . ethylpmtanoale 0 = pent-2-ylpentanoate Z . p+nt-2.yl3-melhylb@anoate

F . rnemylhe.xanoate P = 2.methylbut-2.ylpentanoate
G . pent.2.ylethano.te

AA . pent.2.yl2-memylbutanoate
Q = 2.methylbuIylpenktmate .46 . but.2-ylpropanoate

H . 2.methylbut-2.ylethanoate R . 2,2.dtnethylPmpy!pe”tano.te AC . Propylprcpanoate

I . pmpyl2-memylpmpanOate S = 3-methylb@Jpentanoate AD . cyclohexylpmpanoate

J . ethyl2,2.dimethylpropanoate T . pentql2-memylbutanoate AE . cyclopentypmpanoate
U . wnty 3-methylbulanoate
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STRUCTURE AND THE FRUITY ODOR OF ESTERS

have to be taken to make sure that any obsewed differences
in odor were not due to the presence of trace impurities,

This is often the case with flexible molecules, where the

reported differences tend to be so small that they have often

been explained away as due to trace impurities. The most
striking differences in odor tend to occur in rigid molecules

such as carvone and menthol. For this data set of ve~
flexible molecules it was assumed that the stereoisomers

exhibited identicaf odor properties; thus, the fruit odor

score of the isomeric mixture was used.

The implications ofchirdity in the development ofa
QSAR areas follows. Ifphysicochemical parameters or2-D

structural descriptors are used to describe structural varia-

tion, the resulting model will not be able to discriminate

between enantiomers even if they do exhibit different
biological activity Tbe best way of discriminating between

enantiomers is by using three-dimensional QSAR tech-

niques sucha.s CoMFAor confirmational analysis,
The molecular modeling, CoMFAansdysis and partial

least squares statistical amdysis were carried out using the

Tripes SYBYLsof&vare version 6.03 and6.l on an IRIS
INDIGO EUN workstation. The operating system was

IRIX version 4.05F. Forward stepwise regression, back-

ward elimination regression and principal component anafysis

were camiedout using the SAS software,

The COMFA Approach

COMFA, Comparative Molecular Field Analysis,zis a

relatively new QSAR approach. It was introduced by Tripes
Associates in 1988, To the best of my knowledge, this is its

first use in the field of olfaction.

The idea underlying COMFA is that differences in bio-

logical activity are often related to differences in the shapes
of the fields surrounding the molecules. Thus, m its name

suggests, COMFA compares the steric andlor electrostatic

fields of a set of molecules. These fields are measured by
placing a hypothetical probe atom, usually an SP3 hybrid-

ized C+ atom, at regular positions around the molecule and,

at these various locations, calculating the energy of interac-

tion between the probe atom and the molecule. When the
probe atom is close to the molecule the energy of steric

interaction is high, and when it is close to an electron-rich

moiety, such as an oxygen atom or p electrons, the ener~ of
electronic interaction is high. Thousands ofenergy terms

are calculated and become the structural descriptors in a

QSAR table. These are then anafyzed using partial least

squ~es (pLS ) an~ysis tO see whether there is a cOrrelatiOn
between the molecular fields and the biological activity

Partial least squares is one of the recommended statistical

techniques for data sets which contain a much larger num-
ber of explanato~ variables than compounds.3 It produces

an equation relating biological activity(y) to the explanatory
variables (x terms), which can be used to predict the activity

of untested compounds. In this case y is the fmit score and
the x terms are electrostatic and steric interaction energies.

Since the equation resulting from a COMFA procedure is
very large, the model is also displayed graphically showing
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the regions of desired and undesired stericbulk and the

areas where negative potential is favorable or unfavorable.
The most important parameter in a COMFA study is the

relative alignment of the individual molecules when their

fields are computed. Properly afigned molecules have a
comparable conformation and a similar orientation in Car-

tesian space. For a series of molecules exhibiting the same

biological activity via the same mechanism, it is assumed
that there is a common confonmational arrangement of key

structural features, Theso-cafled’’active’’ confirmational

arrangement of fruity esters, or for that matter anyodiferous
molecule, is not known. It is therefore up to the organic

chemist or molecular modeler to explore possible energeti-

caflyfavorable conformations that all of the molecules can
adopt. In this study the chosen conformation was that in

which the longest carbon chain backbone formed a stag.

gered straight-chain arrangement, The esters were aligned

using pentyl pentanoate as the template by superimposing
the carbonyl carbon atom and the two ester oxygen atoms.

The ester group was chosen for the alignment based upon
the assumption that fruity esters may interact with olfactory

receptors through hydrogen bonding with either or both of

the ester oxygen atoms acting as hydrogen bond acceptors,
Inthecase of thechiral esters, only oneenmtiomerwas

modeled, and it was assigned the fruity score of the mixture.

Thus, for esters such as pent-2-yl ethammte (G) and pmpyl
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STRUCTURE AND THE FRUITY ODOR OF ESTERS

pent.2-yl ethanoate (G) propyl Z-methylpropanoate (1)

Figure 1. Diagram illustrating the enantiomer of
choice for molecular modeling

Z-methylpropan oate (I), the ester chain was arranged as in

Figure” l”im6the methyl substituents placed he~ind the
pkme of the molecule, The 27 mutually aligned molecules

we shown in Figure 2,

The first COMFA model was poor. It could explain only

59% ofvariation in the observed fruit score (as indicated hy
the correlation coefficient R20f0,59) and was expected,

from cross-validation experiments, to be of’poor predictive
value (cross-vaf idated Rz, ming the leave-one-out tech-

nique, was 0,27), The Iowvafue forthecross-vdidated Rz

suggests that either the asswnptions mderlying the model

are incorrect m one or more of the compounds included in

the model areoutliers, The compoundsthat were pourly
modeled were identified from a plot of the predicted m. the

actual fruit score, The worst o“tlier was hmyl methanoate

(A) with a predicted fruity score of 83% and an actual score
of 24% Since the steric and electrostatic properties of
mcthamnte esters are quite differtmt from those of higher

esters, this compound was omitted from the data set. An-
otherporly modeled wmpomdww pmtyl 3-methylbutarmate

(U), The predicted fmit score for this compound vm.smuch

higher than the observed score (124% predicted vs. 66%

actual). However, this material also hwfahighs weatys core,
which is prohahly due to the presence of trace quantities of

isovderic acid, ”This swea ty note is likely to mask some of the

fnli~character ofpen&13-methylbll&an(~ate. Therefore, it
was decided that this compound should also be omitted

during rederivatizatirm of the QSAR.

Omission ofbexyl methanoate andpenty13-m&bYlbutanoate

resulted in an improvement in the model. The cross-validated
R2, using the Iewe-one-out technique, was 0.52; the R2

masure offlt was 0.84; the F value was 36.9; and the optimum

number of components was 3. The fraction of the 8470
variance explained by the electrostatic fields was 9%, and that

explained bythesteric fields was9170. This suggests that the

fruitiness of diphatic esters is predominantly governed by
stwic effects, and that electrostatic effects appearnat to be

impotiant. This is not too surprising since afl of the com-

pounds in this data will have similar electrrmic properties

(they al contain only one finc~ional group, the ester group,
ad this group is superimposed).

The si,mpk <If~>entyl 3-rr,<:tl,ylbut,,noate was washed with has. and subs<q,ux,tly

,1.ter,ninedtol,. >YY70pwe, Hc)wcver, a.r]rr,,,.,,mdthzt ap~.rstobep.re may

c.nedII inpritks present ,,t Iewls below the d.t.cti.. limit of won todays

sqdiisti.ated mulpcal techniques. If these . . . stmnglyodotiferm.s, .s is tbe mw.

with iswd.ric acid they till sigmdkant[y zffect tl,r overall ocf.r prc,fk of.

w,,,],. Tlk ilb,,trutes the irr, pmtume of .Ifact,,ry putity,,s q>,msed ,oclmmie.1
p. ,ih i. ,),? mv,,w,er”e,,t c,f “<10,,.
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Figure 2. Alignment of 27 eeters

penfyl ethanoate (fruit score= 100%)

2-pentyl ethanoate (fmit score = 34%)

Figure 3. COMFA model

The resdts from this QSAR analysis are shown graphi-

cally in Figures 3 and 4, Figure.3 shows the spatial distribw

tion ofimpotiant steric and electrostatic properties affecting

the fruit score. Negative potential is favorable in the red
areas (corresponchng to the high electronic density of the

ester group) and disfavor,{ ble in the blue areas. Bulky

substituents are desimblein the green areas and undc:sir-
ahle in the yellow areas, To relate these regions to actual

molecules, both pentyl ethanoate andpent-2-yl ethanoate

have been placed within the COMFA model. From the
kltter it can be seen that suhstit”ents close to the etlmmd

owgen atom fall into the forbidden yellow region, resu]ting
in a decrease in the fruit score. The location of the yellow

region on one side of the molecule reflects the input of only

one enantiomer for tbe chiral esters,
The graphs in Figure 4 are plots of thepredictedm.

actual fruit score. For a perfect model the points would Fall

on adiagond line from left to right. Points which deviate
from this line correspond to compounds that are poorly

modeled bythe QSAR. This graph viswdly shows that the
model is good. In fact, an Rz of 0.84 is extremely good for a

correlation between odor and structure. The diffkulties
associated with odur measurement generdlygive rise t“ a

10-1.5% variation in the individmd odor scores, Thus, even
if a perfect correlation between structure and udor was
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STRUCTURE AND THE FRUITY ODOR OF ESTERS

l’ii,:::,:,:;,al$,:::::
COMFA model 20 40 60 60 100

Actual

Figure 4. Graphs of predicted vs. actual fruit score
Hansch model

Table Il. The CoMFA-predicted fruit scores and the
obsewed fruitiness of the four test esters

Prsdictsd Obssrvsd
Tsst compound fruit score(%) frultlnsss

but-2-ylpropanoate(AB) 31 moderate

propylpropanoate(AC) 66 strong

cyclohexylpropanoate(AD) 38 strong

cyclopentylpropanoate(AE) 34 strong

,tained, one would not expect the Rztobe much greater
than 0.90. However, the cross-validated R2 of 0.52 is indica-

tive of a model of only moderate predictive ability

Tbe COMFA procedure was repeated using only the a-

chird esters to determine whether or not a more robust
model wasobttined. Because cbiralesters were excluded,

we could remove the assumptions about the effect of

chirdity on the organoleptic properties of aliphatic esters.
The resulting COMFA model vms ve~ similar to that ob-

tained using the larger datia set (R2 = 0.84, cross-validated
R2 .0.47, optimum number of components .3, F = 23.3,

fraction of variance explained by the steric and electrostatic

fields. 82% and 18% respectively). The spatial distribution

of the important steric fields was also ve~ similar except

that there were now two areas where substituents were
undesirable, one on either side of the molecule. This re-

flects the input of compounds such as 2-methylbut-2-yl

ethanoate (H), 2-methylbex-2-yl etbanoate (L), 2-methylhex-
2-yl 2,2-dimethylpropanoate (M) and 2-methylbut-2-yl

pentanoate (P), which all have very low fruit scores. The

COMFA model using the larger data set had only one region
of undesired steric bulk because the anafysis was dominated

by the presence of single enantiomers.

The COM FA model WSLSused to predict the activity of
four test esters (Table II). These esters were prepared as

part of a loud school’s chemisby project and as such have
not been odor profiled by the Quest expert panel. Instead,

the four esters were assessed by a panel of fragrance
chemists and ranked as weak, moderate or strong. All of the

esters were strongly fruity except for but-2-yl propanoate,

3S/Perhmer a Flavorist

which wasofonly moderate fmit intensity, It was felt that

this qualitative data would be adequate for testing the
predictive ability of QSAR models.

In the case of the COMFA model, it was concluded that

accurate predictions were restricted to compounds (such as
propylpropanoate and but-2-yl propanoate) which were

very similar in structure to those used to derive the model.

In contrast, extrapolation of the QSAR to predict the fruit
score of compounds (such as cyclopeniyl propanoate and

cyclohe~l propanonate) that structurally fell outside tbe

scope of the data set, gave poor results. Reasons for this
limitation include the sensititi~ of the COMFA approach to

changes in conforms.tiomd arrangement and molecuhu digm

ment, For example, the predicted fruit scores for five

different Iowenergy conformations of cyclobexylpropanoate
were in the range of 18-48%.

Tbe CoMFA model has regions ofdesired steric bulk
(green regions) on both sides of the ester function. Since

both these areas are approximately five carbon atoms away
from the functional group, the COMFA model predicts that

pentyl pentanoate (N) will have avery high fruit score.

However, this is not the case. Pentyl perdanoate has a lower

obsewed fruit some than, for example, either pentyl ethanoate
(B) orethylpentanoate (E) (65’% vs. 100% and &5%,

respectively), From this it is clear that one of the Iimitatiom

of the COMFA approach for this data set is that it cannot give

an either/or model. It cannot graphically represent that the
most active esters have a long chain on one side of the est m
group and a short chain on the other, and that it doesn’t

matter which way the ester group is oriented between the

two chains. That is, as shown in Figure 5, the short chain can
be attached either to the ether oxygen atom (-O-) (as in

compound E) orto the carbonyl group (C=O) ~asincom-

pound B); tbe same is true for the long chain. Sell,4s during
his studies into the SAR of fruit odor, afso concluded that for
an ester to be strongly fruity the ester group is best placed

one or two carbons in from the end of the chain.

The above observations suggest that perhaps abetter
alignment of these esters is one in which tbe longest alkyl

chain andthecarbonyl group are superimposed. However,
when this alignment was investigated, only two out of the 27
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Refsrence Fruit Score I

Regions of 1
desired

stwic bulk

B 100

Figure 5. Simple rspressntation of COMFA QSAR showing Its
Inebillty to give an eitherlor model

/+./-’/O ‘T’ penty ethanoate (B) I
“-’-0+-’’’”penyl pentanoate (N) I

;
~ow %%J%&

lengthon both sides of
0 catinyl group is 4)

A./---y.
ethyl pentanoate (E),

0 reahgned

“---nf”’ Methyl hexanoate (F),
realigned

0

Figure 6. Rsslignment of the ester dsts set

Total length (L)

L
RI R2 ~

cmnb= yxy :“” R’”””: !--”’ w-””:

w-
o

Figurs 7. Deflnltlon of Lmti

esters in the data set had to be realigned. They were ethyl

pentanoate (E) and methyl hexanoate (F). This stems from
the fact that the data set had originally been chosen to study

the effect of steric hindrance w“hile maintaining a const~t
molecular weight. 4,s One of the remo~s for this is that

increasing molecular weight is believed to he associated
~th ~ decrease in fmitiness ,6,7 Consequently, the data set

contains a large number of C1O isomeric esters derived
from various C5 alcohols and C5 carboxylic acids. Since
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afignment is based upon superimposition of
the carbonyl group, the number of atoms,

including oxygen, on the afcohol side is six

and on the other side four, Thus the alcohol
side of these C 10 esters is always longer than

the chain derived from the acid moiety even

when there is extensive branching as in the
case of 2,2-dimethylpropyl pentanoate (R)

(Figure 6), The COMFA model derived from

the data set containing tbe two realigned
molecules was very poor,

The Henech Approach

This approach is named after the founder

of modem QSAR, Corwin Hansch, who sug-

gested that the biological activity of a mol-
ecule was a function of its electronic, steric

and hydrophobic properties. The biological

activity is correlated to a range of physical
and stmctural parameters in the form of a

regression equation, In the literature there are several

examples in which the Hansch approach has been used to
correlate odor with molecuku properties, These include the

odor threshold vafues of a series of homologous com-
pounds? the odor quality of fruity and floral odorants! the

odor similarities of ethereal, floral and benzafdehyde-like

odorants and anosmia to fatty acids.g
Since the COMFA approach had highlighted the impor-

tance of the position of the ester group in the chain, a
parameter (Lcomb) was invented to quantitatively describe

this structural feature. Lcomb was derived as follows. The
length of the acid moiety (Rl) was defined as the distance

between the carbonyl carbon atom and the terminus carbon

atom, and the length of the alcohol moiety (R2) as the
distance between the ether oxygen atom and the end carbon

atom (Figure 7). These lengths were expressed as a fraction
of the total lengths (L) so comparisons could be made

between compounds of varying chain length. The two

fractions were then multiplied together to give LWm&Lmmb
is low when the ester group is toward the end of the chain,

irrespective of which end, and higher when the ester group

is in the middle. A simple 2-D plot of Lcomb against fruit

score for six unsubstituted esters (B, C, D, E,F,N) shows, as
is expected, that Lcomhincreases as the fruitiness of the ester

decreases (Figure 8).
We evaluated combinations of Lmmb with a variety of

other parameters. One of the combinations which best

accounted for the obsewed differences in the fruit score of
aliphatic esters was equation 1 (Figure 9). This equation

contains a molecular length term (L), Lcomb and Charton
steric substituent constants (v). The Chmton parameter is

related to measured rates of hydrolysis of esters and, as
such, is a measure of intramolecular steric effects around

nemby reaction centers.’0 The negative coefficient of the

Charton parameters means that as the vafue of these con-
stants increases, that is, as steric hindrance increases, the
fruit score goes down. The larger coefficient of uo, means

Petiumer& FlavotisV39



STRUCTURE AND THE FRUITY ODOR OF ESTERS
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Figure 8. Graph of fruit score vs. La, for six Figur6 10. Scatter plot of length vs. logP
unsubstituted estere

Fruit score = 94.4 – 37.8vR – 48.6uOR + 6.lL – 135 Lcomb

(R2 .0.67, number of components .2, cross-validated R2 = 0.50, F = 21.34, n= 24)

where: OR = Charton subsfitoent constaut fortheafkyl group attached toC=O

VOR = Chafion substitient constant forthe~lgroup attached toe&eroVgenatom

L = molecular length

L = descriptor forposition ofester group inthechaincomb

Figurs 9. OSAR equetlon 1 obtsinsd by partial feast squsree enalysie

that steric hindrance around the ether oxygen atom has a
greater effect than steric bulk around the carbonyi group.

The positive coefficient for iength (L) means that fruitiness

increases as the molecule becomes longer. The negative
coefficient of Lcombmeans that as LCOmbincreases, that is, m

the ester group is placed toward tbe center of the chain, the

fruity character is reduced.

The relative importance oftbe four variables was esti-
mated using fonwird selection regression and backward

elimination regression. In forward selection, variables are

successively added to the model and retained if the fit of the
model is significantly improved. The first variable entered

will be tbe one that is most higbly correlated, on its own,

with the y variable (in this case, the fruit score). The second
variable entered will be the one that causes the greatest

maximization of R2, and so on. The backward elimination

regression method begins with all the variables in tbe model

and proceeds by eliminating the least useful variables one at
a time. Both regression techniques showed tbat the most

important parameter out of those evafuatedwasuo~, the

second most important VR, the third either mOIecular len@h
or the octanol-water partition coeflcient (logP), and the

fourth Lcomb.

LogP can replace the role of length in the correlation
QSAR because these two parameters are highly correlated
(Figure 10). However, their physical interpretation in un-

derstanding structure odor correlations is quite different.
Molecular length could be associated with shape require-

ments for optimum interacticm with the receptor system,
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whereas tbebahmcebetween hydrophobicityand lipophificity

will affect the transport properties of a molecule across

aqueous-lipid interfaces,

The correlation between molecular length and logP is
clearly seen in the corresponding 2-D plot (Figure 10).

However, a better estimate of the correlation between the
two parameters can be obtained from the parameter corre-

lation matrix (Table HI). Tbe elements of the correlation

mat rix can take on a value fro m –1 to +1, where + 1 indicates
perfect positive correlation between two parameters, –I

perfect negative correlation and a vafue of zero indicates no

correlation. Thus the +1.00 values on the diagonal of Table
111 simply tell us that aparameter is perfectly correlated

with itself, The pairs of parameters which are significantly

correlated with each other are length and logP and—
became molecular length is med in tbe derivation of Lmmb
—len@ and Lcomband logP and Lcomb.It is interesting that

the correlations between the fruit score and the parameters
suggest a slightly different order of relative importance for

the parameters than the forward selection and backward
elimination regression analyses. Once again TJORcomes out

as being the most important. However, there is little differ-

ence between the second two most important parameters

(v, and length) and it is somewhat surprising, based upon
the obsewation that logP can replace the role of length in

the QSAR equations, that logP is not correlated to the fruit

score at all.
At first sight, the Hansch correlation QSAR (equation 1,

Figure 9) does not appear to be as good as the COMFA
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I Table Ill. Correlation matrix

fruit score VR

fruit score +1.00 -0.30

% 4.30 +1.00

%, +.67 -0.08

length +0.35 +0.08

L 4.16 +0.31.,,4
10gP 4.01 +0. 36

%

-0.67

+.06

+1 .00

4.15

+0.25

+0.21

length L-,

+0.36 +.16

+0.08 +0.31

4.15 +0.25
+1.00 +0.62

+0.62 +1.00

+0.63 +0.72

10gP

4.01

+0.36

+0,21

+0.63

+0.72

+1 .00

Table IV. The Hansch-predicted fruit scores
and the observed fruitiness of the four test eeters

Test compound

but-2-ylpropanoate(AB)

propyl propanoate (AC)

cyclohexyl propanoate (AD)

cyclopentyl propanoate (AE)

Predicted Obsermcf
fruit score(%) fruitiness

47 moderate

62 strong

56 strong

58 strong

model. Although they are expected to have similar predic-

tive abilities, as indicated by their cross-validated R2 values
of 0.50and 0.52 respectively, the Hansch model accounts

foronly 67%ofthe observed vuiation in fmit score, as

OppOsed tO the 84% expl~ned by the COMFA mOdeL The
same conclusion is drawn by comparing the corresponding
graphs of the actual vs. predicted fruit scores (Figure 4).

However, when the two models were put to the red test and

used to predict the activity of the four test esters, it was
found that the Hansch model, in contrast to the COMFA

model, was mpable of both interpolative and extrapolative
prediction (Table IV). This difference in predictive ability is

believed to be due to the different methods used to quantify

steric hindrance. Advantages of the Charton steric substitm

ent constants include their relationship to measured rates of
hydrolysis of substituted esters and their independence of

the postulation of a single active conformation.

Other steric parameters, notably the Kier and Hall con-

nectivity indices,ll have also been used successfully in the
Hansch approach to correlate odor with molecular struc-
t“re,6S.lZ These in&ces are simply calculated frOtII the

topology of the molecule and, as such, represent the size
and extent of branching in a molecule. DaPa sets such as

these are ideal for further comparisons of the Hansch and

COMFA approach. Prelimina~ investigations at Quest In-
ternational into the use of COMFA to correlate Amoore’s13

bitter almond data set were disappointing. Ontbe other
hand, KierY and Deardenlz both obtained good correlations

using various connectivity indices in the Hansch approach.

Principal Component Analysis

Principal component analysis (PCA) is a technique used

to reduce an n-dimensional data set to either a two- or

three-dimensional data set. This allows the display of n
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Table V. Variance explained
bv the DrinciDal comrxments

Proportion Cumulative
Pc Elgenvalue of variance variance

1 1.779 44.4% 44.4%

2 1.076 26.9% 71.4%

3 0.606 20.1% 91.6%

4 0.337 8.4% 100.0%

molecular properties on asimple 2-D or 3-D plot, where

each point represents a compound which can be coded

according to either its chemical name or biological activity.
If the chosen molecular properties are indeed important in

determining the biological activity of interest, then distinct

clusters will be formed for compounds of different activity
This technique is thus well suited for classified biological

data such as active/inactive, stron~moderate/weaA and odor

descriptors. Since the majority of odor data is of a classified

nature, the evaluation of QSAR techniques in the field of

olfaction would be incomplete tithout the inclusion of a
classification method, such as PCA,

Reduction in dimensiomdity is achieved by the creation

of principal components (PCs), each being a linear combi-
nation of all the original explanato~ variables. Tbe first

principal component explains the greatest variation in the

data cloud, the second the next maximum variation and so
on. The principal components become the new axes in the

2-D or 3-D plot.

The fruit score for each ester was converted to a qualit-

ativeodor measurement by ranking the ester as weak, mod-

erate or strong according to the following rules:

y. fruit score -

<33 weak

33-66 moderate

>66 strong

Four principal components were created from the four

variables used in the Hansch approach: the two Charton
parameters VOR and VR, molecular length ~d LCOm&The

results are summarized in Tables V and VI. Each principal

component (PC) has an associated eigenvalue which is
related to the proportion of variance explained by the PC.

Each new PC explains successively less of the total variance.

As a rule of thumb, a PC which has an eigenvalue greater

than 1 contains more information than a single variable and,
as such, should reincluded intheflnd PC analysis. Using

this criterion, this data set can be reduced from four dimen-
sions to two dimensions; the two PCs explain 71.4% of the

originaf variance.
Tbe new principal components can be interpreted using

the eigenvectors (Table VI ). These measure the contribu-

tion of each original property to each principal component.
Thus, PC 1 is predominantly made up of Lcomb, length and

u“; PCZ is predominantly VOR; PC3 is predominantly VR
Interestingly, a 2-D plot of PC1 and PC2, which in

vol.21, MwcWA@1199E

Table Vi. Eigenvectors

Variable Pcl PC2 PC3 PC4

% 0.435 -0.235 0.861 0.118

%. 0,121 0.924 0.146 0.331

length 0.605 -0.226 -0.453 0.614

Lm,”, 0,655 0.195 -0.181 -0.707

combination explain 71.4% of the variation in the molecular
property cloud, resulted in no well-defined clmters of

different activity classes. This suggests that the variables

that make the greatest contribution to PC 1, namely length
and L ~Omb,are not the molecular properties which primarily

determine the fruitiness of the esters, These findings are in

agreement ~th the resuks from the forward selection and
backward elimination regression analyses. However, a plot

of PC2 vs. PC3 produced some clustering of esters with

strong, moderate and weak fruity odor characteristics (Fig-
ure 11). The strongly fruity esters form a tight cluster

between PC2 vafues of –1.5 and –0,5 and PC3 values of

+.75to +0.25, The moderately fruity esters radiate out
from the “strong” cluster, and the weakly fruity esters are on

the periphery of the graph.
In Figure 11, the boundaries between each class are

somewhat “fuzzy” because of the arbitrary nature of the
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classification. For example, compound G with a fmit score

of 34% is ranked as moderate and compound J with a fruit
score of32% as weak However, from the fruit scores it is

clear that there is no significant difference between the

fruitiness of these two esters. Consequently, the principal

component analysis was repeated using only the strong and
weak compounds to see whether or not this gave better

discrimination. The results from tbis analysis were very

similar to those obtained using afl three classes of esters.

The eigenvalues and eigenvectors were virtually identicd.
The PC2 vs. PC3 plot was afso vey similar to that obtained

from the original analysis, with, of course, just the moderate

points missing. Both models poorly modeled 2,2-
dimetbylpropyl pentanoate (R). This is an ester which has a

strong fruity odor but which fsdfs amongst the weak esters

in the PC plot, Interestingly, it is also the main outlier in the

Hansch model where, again, its activity is significantly
under predicted (predicted fruit score = 35, observed score

= 72).

The eigenvectors for PC2 and PC3 show that the Charton

substituent constant for the afcohol moiety makes the great-
est contribution to PC2, and that the Charton substituent

constant for the acid moiety makes the greatest contribu-

tion to PC3. From the above results, one might e~ect that
a simple 2-D plot of the two different Charton steric

substituent constants would produce an equafly good dis-

criminating map. However, this is not the case. The bound-

aries between the different activity classes are less well
defined, and there are examples of esters from different

‘r x

1
x

2
R
A

31
“x

L 3%

Key to fruitiness

A strong

. moderate

x weak

■ unknown(test.ster)

1 8 5.- ●.*X
0 ■6

A4; ●

-’-
-2 -1 0 1 2 3

PC3

Figure 11. Scatter plot of PC2 vs. PC3

actitity classes with exactly the same x,y coordinates. Thm

the contribution made by the other properties in PC2 and
PC3 improves the discriminating ability of the resulting

model and afso gives unique coordinates for every com-

pound in the data set.
The activity of the four test esters can be estimated from

their position on the PC2 vs. PC3 plot (Figure 11 ). Afthough

all four compounds lie within the moderate activity class,

but-2-yl propanoate (AB) lies toward the moderate-weak
boundaty line and thus would be predicted, out of the four

test esters, to be the one with the weakest fruity character,

whife propyl propanoate (AC), which is close to the strong-
modemte boundsuy, woufd be predicted to be the strongest

fruit ester. The two cyclic esters (AD and AE) would be
predicted to have a fruit odor of moderate intensity, Thus

the PCA model, although it uses the same explanatory

variables as the Hansch model, appears to be poorer at
predicting the activity of the two esters which structurally

fafl outside the scope of the test data set.

In order to make a better comparison between the

principal component anafysis and the Hansch model, the
scores for the second and third principal components were

used parameters in a linear regression. The resulting QSAR

equation (equation 2, Figure 12) is comparable to equation
1, They both have similar R2 values (0.64 and 0.67, respec-

tively) and give similar predicted fruit score values for the
four test esters. The predicted fruit scores obtained using

equatiOn 2 we 46% fOr but-2-yl prOpanOate (AB), 63q0 fOr
pmpylpropanoate (AC), 55% forcyclohexyI propanoate

(AD) and 57% for cyclopentyl pmpanoate (AE).

Conclusion

Each QSAR technique produced a model which was

capable of relating the fruitiness of afiphatic esters to a
Iimitednumberofmolecular properties. Stericeffects around

the ester group were found to be the most important
determining property in afl three cases. The Hansch and

COMFA approaches also showed that the introduction of

substituents on the afcobol side had a greater detrimental
effect on the fruity character than substituents on the acid

side. AUof these results were in agreement with the findings

of Sell,45whoin 1986 used hischemical expertise to draw
qualitative conclusions about the effect of substitution on

the intensity of fruit odor. It was thus concluded that these

techniques can be used to identifi sensible relationships
between structure and odor, and that they can therefore be

applied, with some degree of confidence, to more cornPli.

Fruit score = 52.97 – 14.26 PC2 -13.40 PC3
(R2. 0,64, F = 18.90, n = 24)

where, OR . Charton substituent constmtfor tbedkyl ~oupatichedto C.O

OOR = Chtionsubstitient constmtfor he~lgoup a&mhedto e*eroygenatom

L . molec.larlengtb

Lomb = descriptor forposition ofestergoup intiechtin

Figurs 12. QSAR equetlon 2
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cated problems where the relationship between structure
and activity is not so obvious. One advantage of all of these

quantitative techniques over empirical SAR rules is that
they can be used to predict the activity score or activity class

of anew compound. In addition, computer-assisted SAR

allows the simultaneous compwison of hundreds of com-

pounds, whereas the organic chemist is restricted to com-
paring only a few compounds at a time.

The COMFA model is quick and easy to use once the

molecules have been aligned. Its use in prediction is also

particularly straightforward. Thenewcompound only needs
to be drawn, minimized and aligned, then “at a press of a

button” its activi~ is predicted. The most important adjust-

able parameter in COMFA is the relative alignment of the
individual molecules. However, it is difficult to decide how

to superimpose con fonnationally flexible molecules, or

molecules which appear to have little in common in terms

of obvious chemical functionality Molecular modeling soft-
ware companies have developed programs that are capable

ofidentiffing common con formational armngements of a

set of active compounds. However, these have been de-

signed primarily for compounds that possess a high degree
of chemical functionality, such as drug molecules. Odorifer-

ous molecules, on the other hand, tend to have only one or

two functional groups and a relatively large hydrophobic
group. It is thus anticipated that the use of the COMFA

approach in olfaction will be restricted to the study of rigid
molecules and closely related andogues.

The success of an SAR derived from statistical tech-

niques such as the Hansch approach or principal compo-

nent anafysis is heavily dependent upon the number and
qudi~ of the selected descriptors. If tbe QSAR is going to

be used to design new materials, one important criterion is

that the parameters are understandable. Ideally, values of

the expkmatorypr operfies should be available for every

compound in the data set. However, this is often not the
case, and the SAR worker is forced to omit from the anafysis

compounds which contain valuable information, The fruity

ester studyvms no exception. The unavailability of three
Cbarton steric substituent constants meant that the Hansch

and PCA models were derived from a reduced data set of 24

compounds. This scenario is best avoided by the use of
calculated properties, many of which can be obtained from

molecular modeling systems. Oneproperfy thatispafiicu-

larly difficult to quantify and thus include in a statistical
QSAR approach is shape. Therefore, biological activity that

is believed to be strongly dependent on shape, such as odor

quality, is best studied using 3-D QSAR tools such as

COMFA or conformation analysis. Odor intensity, on the
other hand, particularly when restricted to a specific odor
-. and chemical class, can be related to molecular prop-

erties using the statistical QSAR approaches reviewed here.

R is believed that in these cases one can use a general QSAR

equation, which includes a volatility term (such as vapor
pressure or gas chromatography retention data), a bydro-
phobicify term (such as logP) and a parameter related to

steric hindrance around the osmophore group.

48/Perf.mer & Flavorist

The potential for SAR in the field of olfaction is exempli-

fied by a few studies where it is claimed that structure-odor
correlations have led to the discovery of a new fragrance

ingredient. 14-18As progress in the biological sciences leads

to an increased understanding of the mechanism of olfac-
tion, and as more sophisticated SAR tools are developed,

the search for such correlations should become easier. This

chaflenge, coupled tiththe potential predictive ability of
this approach, will entice chemists and molecular modelers

to continue researching this area.
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