Odor Characteristics of Aliphatic Metameric C-13 Ketones, Alcohols and Their Derivatives

by J. Gibka, Institute of General Food Chemistry, and M. Glinski, Warsaw Technical University

Odor characteristics of tridecan-x-ones (x = 2,3,4,5 and 6)

In natural environments, only the tridecanone isomer with the carbonyl group in position 2 has been found to exist. Tridecan-2-one occurs as a flavor component in many raw materials originating from plants or animals, and is produced in multi-step oxidative enzymatic transformations of fatty acids present in them. The presence of tridecan-2-one has been well documented in milk and its products, e.g. in the concentrate of albumen, yogurt, butter and the Italian cheese Grana Padano.^{1,2} Boiled pork liver is also a source of this ketone.³ Tridecan-2-one is present in hop and in a few exotic plants that grow in equatorial or tropic climates. The primary sources of tridecanones and their derivatives are as follows:

- The essential oil from the roots of the plant *Bowdichia virgilioides* (Leguminosae) containing ca. 55 percent tridecan-2-one.⁴
- The essential oil from fresh fruits, flowers and bark of the plant *Litsea monopelata* (Roxb.) containing 11.3 percent tridecanol and 9.4 percent tridecanal.⁵

We recently studied a group of compounds derived from tridecan-7-one and determined their odor characteristics and threshold concentration.⁶ It was discovered that tridecan-7-one and its ethylene acetal have interesting, pleasant nutritive odors. The odors of tridecan-7-ol and its acetate are less interesting — waxy-fatty.

Structural formula ^a	Odor characteristics	Odor threshold concentration (ppm)	Reference
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Russian leather with a tanning leather no	ote 20-30	9,10
	Fresh, floral-fatty with an ozone note	10-15	-
	Intensive, warm molten lard	20-30	11
	Intensive, mild with a fatty note	20-30	12
	Fruity with an apple, apricot and musk no	ote 30-40	13
^a Formula: C ₁₃ H ₂₆ 0; M = 198.35 g [*] n	nol'1		

The aim of the present work is the determination of the odor of a series of tridecanx-ones — where x = 2,3,4,5 and 6 — and their derivatives. The relations between structure and odor in the whole family of the tridecanone derivatives are described. The synthesis of all the compounds will be presented in a forthcoming article.⁷

### Conclusion

The odor characteristics of ketones and their derivatives are presented in T-1 to T-5. Pleasant notes accompanied fatty-type ketone odors, e.g. floral for tridecan-3one, and fruity for tridecan-6-one. Alcohols, however, were less interesting, all possessing only a faint or mild waxy odor. Acetates had stronger odors than the correcontinues on page 46

**T-2** 

## Odor characteristics of tridecan-x-ols (x = 2,3,4,5 and 6)

Structural formula^a **Odor characteristics** Odor threshold Reference concentration (ppm) OH Faint waxy, fatty 60-80 Faint, almost odorless ОH Faint waxy, fatty 15 OH Faint waxy, fatty 60-80 DН Mild waxy OH ^aFormula:  $C_{13}H_{28}O$ ; M = 200.36 g^{*}mol⁻¹

## Odor characteristics of tridec-x-yl acetates (x = 2,3,4,5 and 6)

Structural formula*Odor characteristicsOdor threshold<br/>concentration (ppm)ReferenceLightly burnt with pineapple note80-9015Faint, almost odorless--Faint, almost odorless--Faint, almost odorless--Mild, with a blueberry note40-50-Vegetable with a parsley root note40-50-

^aFormula:  $C_{15}H_{30}O_2$ ; M = 242.40 g^{*}mol⁻¹

## Odor characteristics of ethylene acetals of tridecan-x-ones (x = 2,3,4,5 and 6)

Structural formula ^a	Odor characteristics C	Odor threshold oncentration (ppm)	Reference
	Fresh, light green with a waxy-fatty note	e 20	_
	Fruity, with a blueberry note	10-15	_
	Faint waxy-fatty	10	—
	Almost odorless	_	_
	Fruity, with a penetrating anise note	10-20	_
^a Formula: $C_{15}H_{30}O_{2}$ ; M = 242.40 g [*] mol ⁻¹			

## Odor characteristics of propylene acetals of tridecan-x-ones (x = 2,3,4,5 and 6)

Structural formula ^a	Odor characteristics	Odor threshold concentration (ppm)	Reference
	Faint sweet, fatty-floral	—	-
	Intensive green with sour a note	_	-
	Faint waxy-fatty with an herbaceous	note —	-
	Intensive with a polypore note	20	-
	Fruity-anise with a fatty note	20	_
^a Formula: $C_{16}H_{32}O_{2}$ ; M = 256.43 g [*] mol ⁻¹			

**T-4** 

**T-5** 

#### continued from page 44

sponding alcohols. Tridec-5-yl and tridec-6-yl acetates had original odors, the former with a pleasant blueberry note, the latter with a vegetable, parsley root note. It is noteworthy that tridecan-3-ol, tridecan-4-ol and their acetates were almost odorless. Acetals were the most interesting group of compounds. They all had nutritive odors with different notes: fruity, spicy, herbaceous or floral, and low odor threshold — 10-20 ppm.⁸

The influence of the position of functional groups in ketones or their derivatives on odor type has been established. The compounds in which the functional group occupies position 2 or 3 have odors with fruity and floral notes. A change in the position of functional groups to 4 or 5 leads to odors with spicy notes. The derivatives of tridecan-6-one have odors with spicy and vegetable notes.

#### Acknowledgements

Financial support from the Polish State Committee for Scientific Research (KBN) (grant no. 7 T09B 049 20) is gratefully acknowledged.

Address correspondence to M. Glinski, Faculty of Chemistry, Warsaw Technical University, 00-664 Warsaw, Noakowskiego 3, Poland; marekg@ch.pw.edu.pl.

#### References

- M.A. Weidong, B.A. Clement and W.R. Klemm, J. Dairy Sci., 80(12), 3227 (1997).
- 2. L. Moio and F. Addeo, J. Dairy Res., 65(2), 312 (1998).
- S.J. Mussinan and P.J. Walradt, J. Agric. Food Chem., 22, 827 (1974).
- A.M.C. Arragia, M.I.L. Machado, G.A. Gomes and A.A. Craveiro, J. Essent. Oil Res., 10(2), 205 (1998).
- S.N. Choundhary, A.C. Ghosh and P.A. Leclerq, J. Essent. Oil Res., 9(6), 635 (1997).
- J. Gibka, J. Gora, M. Glinski and J. Kijenski, Perfum. Flavor., 24(5), 19 (1999).
- 7. J. Gibka and M. Glinski, Polish J. Chem. (in press).
- D.G. Guadagni and R.G. Buttey, J. Food Sci., 43, 1346 (1978).
- 9. Bedoukian Research Inc., 608, 52 (2001-2002).
- S.C. Wolch and M.E. Wolters, J. Org. Chem., 43(13), 2715 (1987).
- L.E. Torres, G.L. Larson, D. Hernandez and J. Lopez-Cepero, J. Org. Chem., 50(25), 5260 (1985).
- G. Stork, A.Y. Leong and A.M. Touzin, J. Org. Chem., 41(21), 3491 (1976).
- C.M. Hill, R.M. Prigmore and G.J. Moore, J. Amer. Chem. Soc., 77, 352 (1955).
- A. Nivlet and V. Le Guen, Tetrahedron Lett., 39(15), 2115 (1998).
- A.S. Goplana and H.K. Jacobs, Tetrahedron Lett., 31(39), 5575 (1990). ■

PERFLIMER & FLAVORIST