Synthesis of New Fragrances from Furfural

By Janusz Nowicki, Institute of Heavy Organic Synthesis, Kedzierzyn-Kozle, Poland; and Jozef Gora, Polytechnical University in Lodz, Poland

F rom the point of view of their sensory properties, furan derivatives are important flavor components of a number of food products, especially those which have been "processed thermally," i.e., by baking, frying, boiling or roasting. More than 80 compounds of the furan-derived group were found in such food products,¹ of which the major ones are characterized in Table I.

A number of furan-derived compounds obtained chemically by synthesis and not found in nature have been described in literature. Some of them have fragrances that are interesting,² although not always characterized in detail.

The present paper discusses the synthesis and fragrance characterization of several new furan derivatives and a few known compounds which have not yet been described in detail. These are alkylfurylcarbinols and 2,2dialkylfurylpropanal derivatives obtained both from furfural and furfuryl alcohol.

Alkylfurylcarbinols and Their Acetates

Alkylfurylcarbinols [1] are known and have been described in literature.² They are obtained, usually with high yields, as products of the Grignard reaction of furfural with alkylmagnesium halides where anhydrous diethyl ether is the most commonly used solvent. The flavors of alkylfurylcarbinols though, have not been described yet. The same refers to their acetates [2].

A number of alkylfurylcarbinols [1] were obtained in the present research work using a modified Grignard reaction described recently for the synthesis of alkylfurylcarbinols.³ The inconvenient diethyl ether was replaced with a THF-

Perfumer & Flavorist/29

Furfural

Table I. Major natural fragrances of furan derivatives

Formula and name	Occurrence	Fragrance
Furfural	coffee, cocoa, roasted and boiled meat, bread	sharp and penetrating, close to that of fresh baked bread, when diluted
CH3 O CHO 5-Methyl-furfural	coffee, cocoa, roasted and boiled meat, bread	caramel-spicy, with a note of bitter almonds
Acetylfuran	coffee, cocoa, roasted and boiled meat, bread	sweet and balmy, slightly burnt
CH ₂ SH	roasted coffee	close to that of fresh roasted coffee, when diluted
Furan-carboxylic acid methyl ester	coffee, cocoa, peanuts	pleasant, fruity with a note of mushrooms
Rose furan	Bulgarian rose oil	rosy with a fruit note

Table III. Fragrance characterization of acetates with the formula 0Ac Yield Boiling point Mol. R (%) [°C] [Torr] weight Fragrance C,H 85 66 11 168 fruity C₃H₇ 82 72 10 182 fruity with a flower note C,H_° 83 82 10 196 fruity with a flower note C.H., 108 80 8 210 flower, green with a note of Ledum palustre iso-C_sH_{eff} 105 81 10 210 delicate, fruity with a note of pear C_6H_{12} 79 127 9 224 pleasant, fruit-flowery C,H15 80 135 10 238 weak, flowery

benzene mixture and furfural was introduced to a magnesium suspension dropwise with alkyl bromide in the form of a suspension (Method A). A conventional two-step procedure (Method B) was used with less reactive chlorides. Alcohols [1] were obtained with yield in the range 75-85%. The products and their fragrances are characterized in Table II. The alcohols were esterified with acetic acid in the presence of anhydrous sodium acetate to produce their respective acetates [2] with yield in the range 80-85% (Table III).⁴

2,2-Dialkylfurylpropanal Derivatives

The possibility of using the phase-transfer catalysis to synthesize fragrances was first reported by Dietl and Brannock, in a paper on the synthesis of 2,2-dialkylphenylpropanal [3] and its derivatives from benzyl chloride and isobutyraldehyde and 2-ethylhexanal.⁵

The aldehyde-derived products such as acetals, alcohols and their esters gave interesting fragrances. Synthesis of fragrances by C-alkylation, with phase-transfer catalysis, of α , β -unsaturated aldehydes [4] with reactive halides such as benzyl or prenyl chloride was developed afterwards.^{6,7}

Both aldehydes [4] and aliphatic aldehydes such as propanal or n-butanal react when used in a suitable excess. At reaction conditions (50% NaOH), the aldehydes undergo crotonic condensation to form aldehydes [4] which further react in situ with halides to aldehydes [5]. The reaction involves only reactive benzyl- and allyl halides.

The present study was based on the reaction of aldehyde C-alkylation with furfuryl chloride, shown in Scheme 1, to synthetize 2,2-dialkylfurylpropanals and further appropriate alcohols and their acetates.

The derived products are characterized in Tables IV and $V.^8$ As shown in these tables, both aldehyde [**6**] ($R_1, R_2=CH_3$) and aldehyde [**3**] produce a penetrating aldehyde-fatty fragrance which makes them useless in perfumery. By blocking the aldehyde group (cyclic acetal), a much milder, flowery fragrance was obtained. Its alcohol derivative, however, gave a more interesting and relatively rare flavor of

i		-						noierencea
Т Z	able IV. R ₁	Fragran	Yield (%)	acteriza Boilir [°C]	ng point [Torr]	Mol. weight	Ids with the formula Fragrance r_{0}	Address correspondence Institute of Food Chemis University in Lodz, ul. S 10, 90-924 Lodz, Polance
сно	CH3	СН₃	66	55	5	152	penetrating, aldehvde-fattv	1. J Maga, CRC Critica Ecodo E 255 (1075)
	<u> </u> сн,	CH_3	88	78	3.5	210	flower with an indol-jasmin note	2. AP Dunlop, FN Pet
СНО	C,H ₅	C¹H°	60	105	5	208	strong, wood-flower	3 European Pat Appl :
CH2OH	ĊH ₃	CH,	85	63	4	154	fresh, yeasty with a note of fusel oil	4. J Nowicki and J Gor 1-2 21 (1991)
CH2OH	C,H₅	C₄H₀	88	98	4	210	fresh, flower	5. HK Dieti and
	c CH ₃	CH ₃	80	74	4	196	fruity, with a note of banana	Tetrahedron Lett 12 6 US Patent 4010207
CH2OA	C C ₂ H ₅	C⁴H ⁸	82	91	1	252	rare, fresh, flower-green	7. US Patent 4380675 8. J Nowicki and J Gor press

٦

Table V. Fragrance characterization of compounds with the formula								
z	R ₁ =R ₂	rield (%)	Boiling [°C]	point [Torr]	Mol. weight	Fragrance R ₄		
сно	CH3	45	90	13	1 78	strong, flower- mushroom with a note of humus		
сно	C₂H₅	55	109	9	206	pleasant, mushroom- flower with a fruity note		
Сн₂он	CH3	88	99	12	180	penetrating, flower with a note of sweet pea		
СН₂ОН	C₂H₅	85	118	9	208	pleasant, fresh, flower with a fruity note		
	c CH ₃	80	86	7	206	pleasant, mushroom- flower		
CH ₂ OA	c C ₂ H ₅	83	108	5.5	250	pleasant, flower- mushroom		

fresh yeast with a note of fusel oil. Elongation of its side aliphatic chains produced a more flowery fragrance (aldehyde [6]). Also its alcohol and acetate derivatives gave pleasant flower fragrances.

Introduction of an unsaturated bond into its side chain produced a distinct note of mushrooms. Their alcohol derivatives produced pleasant, rare, flower fragrances and can be of interest to perfume producers along with their acetates which give flower-mushroom flavors.

Deferences

e to Jozef Gora, stry, Polytechnical Stefanowskiego 4/ d.

- al Rev, Furans in
- ers, The Furans, York (1953)
- 3755 (1981) ra, Pollena TSPK
- KC Brannock, 73 (1973)
- (1976)
- (1981)
- a, Pol J Chem, in